【題目】某校七年級學生進行體育測試,七年級(2)班男生的立定跳遠成績制成頻數(shù)分布直方圖,圖中從左到右各矩形的高之比是,最后一組的頻數(shù)是6,根據(jù)直方圖所表達的信息,解答下列問題。

1)該班有多少名男生?

(2)若立定跳遠的成績在2.0米以上(包括2.0米)為合格率是多少

【答案】(1)40人 (2)

【解析】試題分析:(1)利用最后一組的頻數(shù)6÷所占的百分比=七年級(2)班男生人數(shù);
(2)用立定跳遠的成績在2.0米以上的人數(shù)所占的比例和÷20=立定跳遠的成績在2.0米以上(包括2.0米)的合格率.

試題解析:(1)6÷=40(人),

即該班有40名男生.
(2)×100%=75%,

即立定跳遠的成績在2.0米以上(包括2.0米)為合格,合格率是75%.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】方程2x+7=0的解_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系xOy,有一個等腰直角三角形AOB,∠OAB=90°,直角邊AOx軸上,AO=1.將Rt△AOB繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,A1O=2AO再將Rt△A1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰三角形A2OB2,A2O=2A1O……依此規(guī)律,得到等腰直角三角形A2 017OB2 017則點B2 017的坐標(  )

A. (22 017,-22 017 B. (22 016,-22 016 C. (22 017,22 017 D. (22 016,22 016

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,點A、B的坐標分別是(a,0),(b,0)且+|b-2|=0.
(1)求ab的值;
(2)在y軸上是否存在點C,使三角形ABC的面積是12?若存在,求出點C的坐標;若不存在,請說明理由.
(3)已知點P是y軸正半軸上一點,且到x軸的距離為3,若點P沿平行于x軸的負半軸方向以每秒1個單位長度平移至點Q,當運動時間t為多少秒時,四邊形ABPQ的面積S為15個平方單位?寫出此時點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1 ∠2,∠B ∠C,可推得AB∥CD.理由如下:

∵∠1 ∠2(已知),

∠1 ∠CGD______________ _________),

∴∠2 ∠CGD(等量代換).

∴CE∥BF___________________ ________).

∴∠ ∠C__________________________).

∵∠B ∠C(已知),

∴∠ ∠B(等量代換).

∴AB∥CD________________________________).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知10x=8,10y=16,則102x-y=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標軸上,∠ACB=900,且A0,4),點C2,0),BE⊥x軸于點E,一次函數(shù)y=x+b經(jīng)過點B,交y軸于點D。

1求證;△AOC≌△CEB

2△ABD的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

利用完全平方公式,可以將多項式變形為的形式, 我們把這樣的變形方法叫做多項式的配方法運用多項式的配方法及平方差公式能對一些多項式進行分解因式例如:

根據(jù)以上材料,解答下列問題:

1用多項式的配方法將化成的形式;

2)下面是某位同學用配方法及平方差公式把多項式進行分解因式的解答過程:

老師說,這位同學的解答過程中有錯誤,請你找出該同學解答中開始出現(xiàn)錯誤的地方,并用 標畫出來,然后寫出完整的、正確的解答過程:

3求證:x,y取任何實數(shù)時,多項式的值總為正數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列事件中,屬于必然事件的是

A. 2018219日是我國二十四節(jié)氣中的雨水節(jié)氣,這一天會下雨

B. 某班級11名學生中,至少有兩名同學的生日在同一個月份

C. 用長度分別為2cm3cm,6cm的細木條首尾相連能組成一個三角形

D. 從分別寫有π, (兩個1之間依次多一個0)三個數(shù)字的卡片中隨機抽出一張,卡片上的數(shù)字是無理數(shù)

查看答案和解析>>

同步練習冊答案