【題目】課外興趣小組活動時,老師提出了如下問題:

1)如圖1中,若,,求邊上的中線的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:將繞點逆時針旋轉(zhuǎn)得到,把、、集中在中,利用三角形的三邊關(guān)系可得,則;

2)問題解決:受到(1)的啟發(fā),請你證明下面命題:如圖2,在中,邊上的中點,,于點于點,連接

①求證:;

②如圖3,若,探索線段、之間的等量關(guān)系,并加以證明.

【答案】2)①見解析;②

【解析】

2)①可按閱讀理解中的方法構(gòu)造全等,把CFBE轉(zhuǎn)移到一個三角形中求解

②由(1)中的全等得到∠C=CBG.∵∠ABC+C=90°,∴∠EBG=90°,可得三邊之間存在勾股定理關(guān)系.

解:(2)①把△CFD繞點D逆時針旋轉(zhuǎn)180°得到△BGD,

CF=BG,DF=DG

DEDF,

EF=EG

在△BEG中,BE+BGEG,即BE+CFEF

②若∠A=90°,則∠EBC+FCB=90°,

由(1)知∠FCD=DBG,EF=EG,

∴∠EBC+DBG=90°,即∠EBG=90°,

∴在RtEBG中,

、之間的等量關(guān)系為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,不添加輔助線,請寫出一個能判斷EB∥AC的條件:___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在橫線上完成下面的證明,并在括號內(nèi)注明理由.

已知:如圖,∠ABC+BGD180°,∠1=∠2

求證:EFDB

證明:∵∠ABC+BGD180°,(已知)

   .(   

∴∠1=∠3.(   

又∵∠1=∠2,(已知)

   .(   

EFDB.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD是∠BAC的平分線,AE是∠BAC的外角的平分線,CE⊥AE于點E. 求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元宵節(jié)將至,我校組織學(xué)生制作并選送50盞花燈,共包括傳統(tǒng)花燈、創(chuàng)意花燈和現(xiàn)代花燈三大種.已知每盞傳統(tǒng)花燈需要35元材料費,每盞創(chuàng)意花燈需要33元材料費,每盞現(xiàn)代花燈需要30元材料費.

1)如果我校選送20盞現(xiàn)代花燈,已知傳統(tǒng)花燈數(shù)量不少于5盞且總材料費不得超過1605元,請問選送傳統(tǒng)花燈、創(chuàng)意花燈的數(shù)量有哪幾種方案?

2)當(dāng)三種花燈材料總費用為1535元時,求選送傳統(tǒng)花燈、創(chuàng)意花燈、現(xiàn)代花燈各幾盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線 l1l2,l3 l1,l2 分別交于 C,D 兩點,點 A,B 分別在線 l1l2 上,且位于 l3 的左 側(cè),點 P 在直線 l3 上,且不和點 C,D 重合.

1)如圖 1,有一動點 P 在線段 CD 之間運動時,試確定∠1、23 之間的關(guān)系,并給出證明;

2)如圖 2,當(dāng)動點 P 在線段 CD 之外運動時,上述的結(jié)論是否成立?若不成立,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù) 的圖象上的一個動點,連接OA,若將線段O A繞點O順時針旋轉(zhuǎn)90°得到線段OB,則點B所在圖象的函數(shù)表達式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A=B=ACB,CDABC的高,CE是∠ACB的角平分線,求∠DCE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)果農(nóng)收獲草莓30噸,枇杷13噸,現(xiàn)計劃租用甲、乙兩種貨車共10輛將這批水果全部運往省城,已知甲種貨車可裝草莓4噸和枇杷1噸,乙種貨車可裝草莓、枇杷各2噸.

(1)該果農(nóng)安排甲、乙兩種貨車時有幾種方案請您幫助設(shè)計出來;

(2)若甲種貨車每輛要付運輸費2 000元,乙種貨車每輛要付運輸費1 300元,則該果農(nóng)應(yīng)選擇哪種運輸方案才能使運費最少,最少運費是多少元?

查看答案和解析>>

同步練習(xí)冊答案