【題目】如圖所示,已知∠AOB90°,∠BOC20°,OM平分∠AOC,ON平分∠BOC;

1)求∠MON

2)∠AOB=α,∠BOC=β,求∠MON的度數(shù).

【答案】(1)45°(2)

【解析】

1)由角平分線的定義及∠MON=MOC﹣∠CON,可得結(jié)論;

2)同理可得:∠MOCα+β),∠CONβ,根據(jù)圖形便可推出∠MON=MOC﹣∠CON

1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=AOC,∠NOC=BOC

∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=AOB

∵∠AOB=90°,∴∠MON=×90°=45°.

2)同理可得:∠MOC=,∠CON=,∴∠MON=∠MOC﹣∠CON==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,湖中的小島上有一標(biāo)志性建筑物,其底部為A,某人在岸邊的B處測得A在B的北偏東30°的方向上,然后沿岸邊直行4公里到達(dá)C處,再次測得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求這個標(biāo)志性建筑物底部A到岸邊BC的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD相交于點(diǎn)O,在∠COB的內(nèi)部作射線OE.

1)若∠AOC=36°,COE=90°,求∠BOE的度數(shù);

2)若∠COEEOBBOD=432,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有(   ).

A. ①②③④ B. ①④ C. ②④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)前夕,小東的父母準(zhǔn)備購買若干個粽子和咸鴨蛋(每個粽子的價格相同每個咸鴨蛋的價格相同).已知粽子的價格比咸鴨蛋的價格貴1.8,30元購買粽子的個數(shù)與花12元購買咸鴨蛋的個數(shù)相同求粽子與咸鴨蛋的價格各多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰 RtABC 中,AC=BC=2,點(diǎn) D BC 的中點(diǎn),P 是射線 AD 上的一個動點(diǎn),則當(dāng)△BPC 為直角三角形時,AP 的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn)如圖,已知:AB=AC,∠BAC=90°,直線m經(jīng)過點(diǎn)A,過點(diǎn)BBD⊥mD, CE⊥mE.我們把這種常見圖形定義為“K”字圖.很容易得到線段DE、BD、CE之間的數(shù)量關(guān)系是 .

拓展探究:如圖2,AB=AC,∠BAC=∠BDA=∠AEC,則線段DE、BD、CE之間的數(shù)量關(guān)系還成立嗎?如果成立,請證明之.

解決問題:如圖3,AB=AC,∠BAC=∠BDA=∠AEC=120°,點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,BD=2,CE=4,求△DEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:2tan60°﹣| ﹣2|﹣ +( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案