【題目】如圖,在△ABC中,BI,CI分別平分∠ABC,∠ACB,過I點作DE∥BC,交AB于D,交AC于E,給出下列結論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長等于AB+AC.其中正確的是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②④

【答案】C

【解析】

根據(jù)角平分線的性質、平行線的性質、等腰三角形的判定與性質分別對各選項分析判斷后利用排除法求解.

①∵IB平分∠ABC,∴∠DBI=CBI

DEBC,∴∠DIB=CBI,∴∠DBI=DIB,BD=DI∴△DBI是等腰三角形

故本選項正確;

②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形

故本選項錯誤;

③∵三角形角平分線相交于一點BI,CI分別是∠ABC和∠ACB的平分線AI平分∠BAC故本選項正確;

④∵BD=DI,同理可得EI=EC,∴△ADE的周長=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC

故本選項正確;

其中正確的是①③④

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是網(wǎng)格圖,每個小正方形的邊長均為1.ABC(“表示三角形)是格點三角形(即每個頂點都在小正方形的頂點上),它在坐標平面內平移,得到PEF,點A平移后落在點P的位置上.

(1)請你在圖中畫出PEF,并寫出頂點P、E、F的坐標;

(2)說出PEF是由ABC分別經(jīng)過怎樣的平移得到的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地氣象資料表明:當?shù)乩子瓿掷m(xù)的時間t(h)可以用下面的公式來估計:t2=,其中d(km)是雷雨區(qū)域的直徑.

(1)如果雷雨區(qū)域的直徑為9km,那么這場雷雨大約能持續(xù)多長時間?

(2)如果一場雷雨持續(xù)了1h,那么這場雷雨區(qū)域的直徑大約是多少(結果精確到0.1km)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點,若點Q的坐標為,其中a為常數(shù),則稱點Q是點P“a級關聯(lián)點例如,點“3級關聯(lián)點,即

已知點級關聯(lián)點是點,點B“2級關聯(lián)點,求點和點B的坐標;

已知點級關聯(lián)點位于y軸上,求的坐標;

已知點,,點和它的“n級關聯(lián)點都位于線段CD上,請直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin∠C= ,BC=12,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在等腰三角形ABC中,AB=AC,P,Q分別是邊AC,AB上的點,且AP=PQ=QC=BC.則∠PCQ的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個邊長為4的等邊三角形ABC與⊙O等高,如圖放置,⊙O與BC相切于點C,⊙O與AC相交于點E.
(1)求CE的長;
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中,ABCD,∠BCD=90°,AB=AD=10cm,BC=8cm。點P從點A出發(fā),以每秒3cm的速度沿折線ABCD運動,點Q從點D出發(fā),以每秒2cm的速度沿線段DC方向向點C運動。已知動點P,Q同時出發(fā),當點Q運動到點C時,PQ運動停止,設運動時間為t秒.

(1)求CD的長.

(2)t為何值時?四邊形PBQD為平行四邊形.

(3)在點P,點Q的運動過程中,是否存在某一時刻,使得△BPQ的面積為20cm2?若存在,請求出所有滿足條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加數(shù)學綜合素質測試,各項成績如下(單位:分)

數(shù)與代數(shù)

空間與圖形

統(tǒng)計與概率

綜合與實踐

學生甲

90

93

89

90

學生乙

94

92

94

86

(1)分別計算甲、乙成績的中位數(shù);

(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計與概率、綜合與實踐的成績按3:3:2:2計算,那么甲、乙的數(shù)學綜合素質成績分別為多少分?

查看答案和解析>>

同步練習冊答案