【題目】如圖,直線的解析式是,直線的解析式是,點上,的橫坐標(biāo)為,作于點,點上,以,為鄰邊在直線,間作菱形,分別以點,為圓心,以為半徑畫弧得扇形和扇形,記扇形與扇形重疊部分的面積為;延長于點,點上,以為鄰邊在,間作菱形,分別以點,為圓心,以為半徑畫弧得扇形和扇形,記扇形與扇形重疊部分的面積為按照此規(guī)律繼續(xù)作下去,則__.(用含有正整數(shù)的式子表示)

【答案】

【解析】

軸于,連接,,,,根據(jù)已知條件得到點,,求得,,根據(jù)勾股定理得到,求得,得到,求得,推出是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.

軸于,連接,,,

上,的橫坐標(biāo)為,點,,

,,

,

中,,

,

直線的解析式是

,

于點,

,

四邊形是菱形,

是等邊三角形,

,

,,

同理,,

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,D、E兩點分別在BC、AD上,且AD為∠BAC的角平分線。若∠ABE=C,AE:ED=2:1,BDEABC的面積比為何?

A. 1:6B. 1:9C. 2:13D. 2:15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2經(jīng)過點A(2,1)

(1)求這個函數(shù)的解析式;

(2)畫出函數(shù)的圖像,寫出拋物線上點A關(guān)于y 軸的對稱點B 的坐標(biāo);

(3)拋物線上是否存在點C,使△ABC的面積等于△OAB面積的一半,若存在,求出C點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AEBF交于點P,連接EF,PD

1)求證:四邊形ABEF是菱形;

2)若AB=4,AD=6,∠ABC=60°,求PD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),頂點的坐標(biāo)分別為,、.

1)平移,使點移到點,畫出平移后的,并寫出點的坐標(biāo).

2)將繞點旋轉(zhuǎn),得到,畫出旋轉(zhuǎn)后的,并寫出點的坐標(biāo).

3)求(2)中的點旋轉(zhuǎn)到點時,點經(jīng)過的路徑長(結(jié)果保留.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,與軸交于點,點是拋物線的頂點.

1)求拋物線的解析式.

2)點軸負(fù)半軸上的一點,且,點在對稱軸右側(cè)的拋物線上運動,連接,與拋物線的對稱軸交于點,連接,當(dāng)平分時,求點的坐標(biāo).

3)直線交對稱軸于點,是坐標(biāo)平面內(nèi)一點,請直接寫出全等時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+2的圖象與x軸相交于點A(﹣1,0)、B4,0),與y軸相交于點C

1)求該函數(shù)的表達式;

2)點P為該函數(shù)在第一象限內(nèi)的圖象上一點,過點PPQBC,垂足為點Q,連接PC

求線段PQ的最大值;

若以點P、CQ為頂點的三角形與△ABC相似,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,B=90°,AB=12mm,BC=24mm,動點P從點A開始沿邊ABB2mm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BCC4mm/s的速度移動(不與點C重合).如果P、Q分別從AB同時出發(fā),設(shè)運動的時間為xs,四邊形APQC的面積為ymm2

(1)yx之間的函數(shù)關(guān)系式;

(2)求自變量x的取值范圍;

(3)四邊形APQC的面積能否等于172mm2.若能,求出運動的時間;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是(  )

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

同步練習(xí)冊答案