【題目】國家支持大學生創(chuàng)新辦實業(yè),提供小額無息貸款,學生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進價為每件40元,該品牌服裝日銷售量y(件)與銷售價x(元/件)之間的關系可用圖中的一條線段(實線)來表示.該店應支付員工的工資為每人每天82元,每天還應支付其它費用為106元(不包含貸款).

(1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關系式;

(2)若該店暫不考慮償還貸款,當某天的銷售價為48元/件時,當天正好收支平衡(銷售額-成本=支出),求該店員工的人數(shù);

(3)若該店只有2名員工,則該店至少需要多少天能還清所有貸款?此時每件服裝的價格應定為多少元?

【答案】(1)y=-2x+140;

(2)該店員工有3人;

(3)該店至少需要200天能還清所有貸款,此時每件服裝的價格應定為55元.

【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)收入等于支出,可得一元一次方程,根據(jù)解一元一次方程,可得答案;(3)利用二次函數(shù)可得出結論.

解:(1)設y=kx+b(k≠0),

由題意得解得y=-2x+140.

(2)當x=48時,y=-2x+140=44.

設該店員工有a人,則(48—40)×44=82a+106,

解得a=3.

答:該店員工有3人.

(3)設每天的利潤為W(元), 由題意,得

W=(x-40) y=(x-40) (-2x+140)

=-2(x-55)2+450.

設至少需要b天能還清所有貸款由題意,得

450b≥(82×2+106)b+36000.

解得b≥200.

答:該店至少需要200天能還清所有貸款,此時每件服裝的價格應定為55元.

“點睛”此題看錯了二次函數(shù)的應用,利用待定系數(shù)法求函數(shù)解析式,一次方程的應用,不等式的應用,解題的關鍵是根據(jù)圖象分類討論.本題屬于中檔題,難度不大運算量不小,該題的難點在于(3)中極值的求取,結合(1)的關系式得出每日收入的二次函數(shù),轉化為頂點式尋找極值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.

(1)求坡底C點到大樓距離AC的值;

(2)求斜坡CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】21.(2013年四川攀枝花8分)某文具店準備購進甲,乙兩種鉛筆,若購進甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購進甲種鋼筆50支,乙種鋼筆30支,需要550元.

1)求購進甲,乙兩種鋼筆每支各需多少元;

2)若該文具店準備拿出1000元全部用來購進這兩種鋼筆,考慮顧客需求,要求購進甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進貨方案;

3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進貨方案中,哪一種方案獲利最大;最大利潤是多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)解方程: =-1; (2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線ABCD,點P在其所在平面上,且不在直線AB,CD,AC上,設PAB,PCD,APC=γ(α,β,γ,均不大于180°,且不小于0°)

1)如圖1,當點P在兩條平行直線AB,CD之間、直線AC的右邊時試確定α,β,γ的數(shù)量關系;

2)如圖2,當點P在直線AB的上面、直線AC的右邊時試確定αβ,γ的數(shù)量關系;

3α,β,γ的數(shù)量關系除了上面的兩種關系之外,還有其他的數(shù)量關系,請直接寫出這些.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1l2,點A、B在直線l1上,點C、D在直線l2上,點C在點D的右側,∠ADC80°,∠ABC,BE平分∠ABC,DE平分∠ADC,直線BE、DE交于點E

1)寫出∠EDC的度數(shù)_____

2)試求∠BED的度數(shù)(用含n的代數(shù)式表示);

3)將線段BC向右平行移動,其他條件不變,請直接寫出∠BED的度數(shù)(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》里有一道著名算題:“今有上禾三秉,益實六斗,當下禾十秉.下禾五秉,益實一斗,當上禾二乘、問上、下禾實一乘各幾何?”大意是:3捆上等谷子結出的糧食,再加.上六斗,相當于10捆下等谷子結出的糧食.5捆下等谷子結出的糧食,再加上一斗,相當于2捆上等谷子結出的糧食.問:上等谷子和下等谷子每捆能結出多少斗糧食?請解答上述問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了維護海洋權益,新組建的國家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域。如圖所示,AB=60海里,在B處測得C在北偏東45的方向上,A處測得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測得AD=120海里。

(1)分別求出A與C及B與C的距離AC,BC(結果保留根號)

(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無觸礁的危險?                         

(參考數(shù)據(jù):=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,已知A(a,0),B(b,3),C(4,0),且滿足(a+b)2+|a﹣b+6|=0,線段AB交y軸于F點.

(1)求點A、B的坐標;

(2)點D為y軸正半軸上一點,若ED∥AB,且AM,DM分別平分∠CAB,∠ODE,如圖 2,求∠AMD的度數(shù);

(3)如圖 3,(也可以利用圖 1)①求點F的坐標;②坐標軸上是否存在點P,使得△ABP和△ABC的面積相等?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案