【題目】(1)計算:(﹣1)0+2sin30°-+|﹣2017|;
(2)如圖,在△ABC中,已知∠ABC=30°,將△ABC繞點B逆時針旋轉(zhuǎn)50°后得到△A1BC1,若∠A=100°,求證:A1C1∥BC.
【答案】(1)2017;(2)見解析
【解析】
(1)原式利用零指數(shù)冪的意義、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的意義以及絕對值的代數(shù)意義計算即可得到結(jié)果;
(2)先在△ABC中利用三角形內(nèi)角和定理求出∠C=50°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠C1=∠C=50°,∠C1BC=50°.等量代換得出∠C1=∠C1BC,根據(jù)平行線的判定即可證明A1C1∥BC.
解:(1)原式=1+2×﹣2+2017
=1+1﹣2+2017
=2017;
(2)證明:在△ABC中,∵∠ABC=30°,∠A=100°,
∴∠C=180°﹣∠A﹣∠ABC=50°.
∵將△ABC繞點B逆時針旋轉(zhuǎn)50°后得到△A1BC1,
∴∠C1=∠C=50°,∠C1BC=50°.
∴∠C1=∠C1BC,
∴A1C1∥BC.
科目:初中數(shù)學 來源: 題型:
【題目】某工廠要加工甲、乙、丙三種型號機械配件共120個,安排20個工人剛好一天加工完成,每人只加工一種配件,設加工甲種配件的人數(shù)為x,加工乙種配件的人數(shù)為y,根據(jù)下表提供的信息,解答下列問題:
配件種類 | 甲 | 乙 | 丙 |
每人每天加工配件的數(shù)量個 | 8 | 6 | 5 |
每個配件獲利元 | 15 | 14 | 8 |
求y與x之間的關系.
若這些機械配件共獲利1420元,請求出加工甲、乙、丙三種型號配件的人數(shù)分別是多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調(diào)查了九年級部分學生一周的課外閱讀時間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖(如圖)的信息回答下列問題:
(1)本次調(diào)查的學生總數(shù)為 人,被調(diào)查學生的課外閱讀時間的中位數(shù)是 小時,眾數(shù)是 小時;
(2)請你補全條形統(tǒng)計圖,在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是 ;
(3)若全校九年級共有學生700人,估計九年級一周課外閱讀時間為6小時的學生有多少人?
(4)若學校需要,從二男二女四名同學中隨機選取兩人分享讀后感,恰好是一男一女的概率?(列表或樹狀圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在平面直角坐標系中,O為坐標原點,拋物線交軸于、兩點(在軸負半軸上),交軸于點,連接,.
(1)求拋物線的解析式;
(2)為直線上方第一象限內(nèi)一點,連接、,,延長交軸于點,設點的橫坐標為,點的橫坐標為,求與之間的函數(shù)關系式;(不要求寫出自變量的取值范圍)
(3)把線段沿直線翻折,得到線段,為第二象限內(nèi)一點,連接、,,為線段上一點,于點,射線交線段于點,連接交于,交于點,連接,若,,設直線與拋物線第一象限交點為,求點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y1=ax2-2amx+am2+4,直線y2=kx-km+4,其中a≠0,a、k、m是常數(shù).
(1)拋物線的頂點坐標是______,并說明上述拋物線與直線是否經(jīng)過同一點(說明理由);
(2)若a<0,m=2,t≤x ≤t+2,y1的最大值為4,求t的范圍;
(3)拋物線的頂點為P,直線與拋物線的另一個交點為Q,對任意的m值,若1≤k≤4,線段PQ(不包括端點)上至少存在兩個橫坐標為整數(shù)的點,求a的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線:和拋物線:,其中.
下列說法你認為正確的序號是______;
拋物線和與y軸交于同一點;
拋物線和開口都向上;
拋物線和的對稱軸是同一條直線;
當時,拋物線和都與x軸有兩個交點
拋物線和相交于點E、F,當k的值發(fā)生變化時,請判斷線段EF的長度是否發(fā)生變化,并說明理由;
在中,若拋物線的頂點為M,拋物線的頂點為N,問:
是否存在實數(shù)k,使?如存在,求出實數(shù)k;如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、﹣2、3、﹣4,這些卡片除數(shù)字外都相同.王興從口袋中隨機抽取一張卡片,鐘華從剩余的三張卡片中隨機抽取一張,求兩張卡片上數(shù)字之積.
(1)請你用畫樹狀圖或列表的方法,列出兩人抽到的數(shù)字之積所有可能的結(jié)果.
(2)求兩人抽到的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在四邊形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=4,BC=6.
(1)如圖1,P為AB邊上一點,以PD,PC為邊作平行四邊形PCQD,過點Q作QH⊥BC,交BC的延長線于H.求證:△ADP≌△HCQ;
(2)若P為AB邊上任意一點,延長PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE.請問對角線PQ的長是否存在最小值?如果存在,請求出最小值;如果不存在,請說明理由.
(3)如圖2,若P為DC邊上任意一點,延長PA到E,使AE=nPA(n為常數(shù)),以PE,PB為邊作平行四邊形PBQE.請?zhí)骄繉蔷PQ的長是否也存在最小值?如果存在,請求出最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在同一平面內(nèi),兩條平行的高速公路AB和CD之間有一條“L”型道路連通,“L”型道路中的EP=FP=20千米,∠BEP=12°,∠EPF=80°,求AB和CD之間的距離.(參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com