【題目】)中是一座鋼管混凝土系桿拱橋,橋的拱肋ACB可視為拋物線的一部分(如圖②),橋面(視為水平的)與拱肋用垂直于橋面的系桿連接,測得拱肋

的跨度AB200米,與AB中點O相距20米處有一高度為48米的系桿.

1】求正中間系桿OC的長度;

2】若相鄰系桿之間的間距均為5(不考慮系桿的粗細),則是否存在一根系桿的長度恰好是OC長度的一半?請說明理由.

【答案】

150

2不存在

【解析】

1】(1)設該拋物線對應的函數(shù)關系式為:y=ax2+c,根據(jù)題意知道其上兩點,求出a,c;

2】(2)設存在一根系桿的長度恰好是OC長度的一半,即為25米,解得x,然后再作討論。

解答(1∵AB=200米,與AB中點O相距20米處有一高度為48米的系桿,

由題意可知:B100,0),M20,48),

設與該拋物線對應的函數(shù)關系式為:y=ax2+c,

則:①10000a+c=0 ②400a+c=48;由①②解得:a=-1/200c=50。

∴y="-1/200" x2+50;

正中間系桿OC的長度為50m;

2)設存在一根系桿的長度恰好是OC長度的一半,即為25米,則

25="-1/200" x2+50

解得 x=±50

相鄰系桿之間的間距均為5米,

每根系桿上點的橫坐標均為整數(shù),

x=±50與實際不符,不存在一根系桿的長度恰好是OC長度的一半。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中,,點邊所在直線上的一個動點,交于點,邊所在直線交于點

在圖中,,直接寫出的值;

在圖中,,直接寫出的值;

在圖中,,先寫出的值,再加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在中,,分別是,的中點,是對角線,延長線于.若四邊形是菱形,則四邊形是(

A. 平行四邊形 B. 矩形

C. 菱形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形的頂點A1,1)、B3,1),規(guī)定把等邊△ABC先沿x軸翻折,再向左平移1個單位為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點C的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面內,二次函數(shù)圖象的頂點為A1,﹣4),且過點B3,0).

1)求該二次函數(shù)的解析式;

2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DBC上,DEAB于點E,DFBCAC于點F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一個圖形先沿著一條直線進行軸對稱變換,再沿著與這條直線平行的方向平移,我們把這樣的圖形變換叫做滑動對稱變換.結合軸對稱變換和平移變換的有關性質,你認為在滑動對稱變換過程中,這兩個對應三角形(如圖)的對應點所具有的性質是( ).

A. 對應點所連線段都相等 B. 對應點所連線段被對稱軸平分

C. 對應點連線與對稱軸垂直 D. 對應點連線互相平行

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知動點A在函數(shù)y=(x>0)的圖象上,ABx軸于點B,ACy軸于點C,延長CA至點D,使AD=AB,延長BA至點E,使AE=AC,直線DE分別交x軸,y軸于點P,Q,當QE:DP=9:25時,圖中的陰影部分的面積等于___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】適逢中高考期間,某文具店平均每天可賣出鉛筆,賣出支鉛筆的利潤是元,經(jīng)調查發(fā)現(xiàn),零售單價毎降元,每天可多賣出支鉛筆,為了使每天獲取的利潤更多,該文具店決定把零售單價下降

零售單價下降元后,該文具店平均每天可賣出________支鉛筆,總利潤為________元.

在不考慮其他因素的條件下,當定為多少元時,才能使該文具店每天賣鉛筆獲取的利潤為元?

查看答案和解析>>

同步練習冊答案