【題目】如圖,在湖邊高出水面50 m的山頂A處看見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為45°,又觀其在湖中之像P'的俯角為60°.則飛艇離開湖面的高度為(  )

A. (25+75)m B. (50+50)m C. (75+75)m D. (50+100)m

【答案】D

【解析】分析:設(shè)AE=x,則PE=AE=x,根據(jù)山頂A處高出水面50m,得出OE=50,OP′=x+50,根據(jù)∠P′AE=60°,得出P′E=x,從而列出方程,求出x的值即可.

詳解:設(shè)AE=xm,在RtAEP中∠PAE=45°,則∠P=45°,
PE=AE=x,
∵山頂A處高出水面50m,
OE=50m,
OP′=OP=PE+OE=x+50,
∵∠P′AE=60°,
P′E=tan60°AE=x,
OP′=P′E-OE=x-50,
x+50=x-50,
解得:x=50(+1)(m),
PO=PE+OE=50(+1)+50=50+100(m),
即飛艇離開湖面的高度是(50+100)m;
故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(PB、C不重合),連接AP,過點(diǎn)BBQAPCD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′BA的延長(zhǎng)線于點(diǎn)M

(1)試探究APBQ的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);

(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y1=ax2+bx+c與直線y2=mx+n的圖象如圖所示,下列判斷中:①abc0;a﹣b+c0;5a﹣c=0;④當(dāng)xx6時(shí),y1y2,其中正確的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,BC=5,C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t0.過點(diǎn)DDFBC于點(diǎn)F,連接DEEF.

1)求證:AE=DF

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

3)當(dāng)t為何值時(shí),DEF為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC與DEF都是等腰三角形,且AB=AC=3,DE=DF=2,若B+E=90°,則ABC與DEF的面積比為(

A、9:4 B、3:2 C、: D、3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若雙曲線y=與邊長(zhǎng)為5的等邊AOB的邊OA,AB分別相交于C,D兩點(diǎn),且OC=3BD,則實(shí)數(shù)k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)O與平面直角坐標(biāo)系的原點(diǎn)重合點(diǎn)A,C分別在xy軸上,點(diǎn)B的坐標(biāo)為(-5,4),點(diǎn)D為邊BC上一點(diǎn),連接OD若線段OD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,點(diǎn)O恰好落在AB邊上的點(diǎn)E則點(diǎn)E的坐標(biāo)為(

A. (-5,3) B. (-5,4) C. (-5, D. (-5,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形紙片ABCD中,AB3,AD9,折疊紙片ABCD,使頂點(diǎn)C落在邊AD上的點(diǎn)G處,折痕分別交邊AD、BC于點(diǎn)E、F,則GEF的面積最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,邊長(zhǎng)為1的正方形ABCDAC 、DB交于點(diǎn)HDE平分ADB,AC于點(diǎn)E聯(lián)結(jié)BE并延長(zhǎng),交邊AD于點(diǎn)F

1求證DC=EC;

2求△EAF的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案
关 闭