【題目】如圖,矩形ABCD的面積為1cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B…;依此類推,則平行四邊形AO2016C2017B的面積為_____.
【答案】
【解析】
矩形ABCD的面積=AB×AD=1,過點O向AB作垂線,垂足為E,平行四邊形AOC1B的面積=AB×OE,根據(jù)矩形的性質(zhì),OE=AD,即平行四邊形AOC1B的面積=AB×AD=,過點O1向AB作垂線,垂足為F,根據(jù)平行四邊形的性質(zhì),O1F=OE=AD,即平行四邊形AO1C2B面積=AB×AD=,依此類推,即可得到平行四邊形AO2016C2017B的面積.
解:過點O向AB作垂線,垂足為E,過點O1向AB作垂線,垂足為F,如下圖所示:
∵∠DAB=∠OEB,
∴OE∥DA,
∵O為矩形ABCD的對角線交點,
∴OB=OD
∴OE=AD,
矩形ABCD的面積=AB×AD=1,
平行四邊形AOC1B的面積=AB×OE=AB×AD=,
同理,根據(jù)平行四邊形的性質(zhì),
O1F=OE=AD,
平行四邊形AO1C2B面積=AB×AD=,
依此類推:
平行四邊形AO2016C2017B的面積=AB× AD=,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,,,,點E為CD上一動點,經(jīng)過A、C、E三點的交BC于點F.
(操作與發(fā)現(xiàn))
當E運動到處,利用直尺與規(guī)作出點E與點F;保留作圖痕跡
在的條件下,證明:.
(探索與證明)
點E運動到任何一個位置時,求證:;
(延伸與應(yīng)用)
點E在運動的過程中求EF的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,tanA=.點D,E分別是邊BC,AC上的點,且∠EDC=∠A.將△ABC沿DE所在直線對折,若點C恰好落在邊AB上,則DE的長為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有三個點A(2,3),B(1,1),C(4,2)
(1)連接A、B、C三點,請在如圖中作出△ABC關(guān)于x軸對稱的圖形△A’B’C’并直接寫出各對稱點的坐標;(2)求△ABC的面積;(3)若M(x,y)是△ABC內(nèi)部任意一點,請直接寫出點M在△A’B’C’內(nèi)部的對應(yīng)點M1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABD與等邊△ACE,連接BE、CD,BE的延長線與CD交于點F,下列結(jié)論:(1)BE=CD ;(2)AF平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年我市體育中考總分60分,其中男生1000米跑為必選項目,再在立定跳遠、跳繩、實心球擲遠、籃球運球和足球運球中選擇兩項;女生800米跑為必選項目,再在立定跳遠、跳繩、仰臥起坐、籃球運球和足球運球中選擇兩項某校對得分超過40分的20位學生的成績m進行統(tǒng)計,結(jié)果如頻數(shù)分布表所示:
求a的值;
若用扇形圖來描述,求分數(shù)在內(nèi)所對應(yīng)的扇形圖的圓心角的大;
若男生小明在剛開始訓練時在選考項目隨機選擇兩項進行訓練,試用列舉法求小明選擇”跳繩籃球運球“的概率提示:可以用字母表示各個項目
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市創(chuàng)建“綠色發(fā)展模范城市”,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用“生活污水集中處理”(下稱甲方案)和“沿江工廠轉(zhuǎn)型升級”(下稱乙方案)進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當年完工),從當年開始,所治理的每家工廠一年降低的Q值都以平均值n計算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.
(1)求n的值;
(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分數(shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計算第二年用乙方案新治理的工廠數(shù)量;
(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計降低的Q值與當年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.
下面有三個推斷:
①當投擲次數(shù)是500時,計算機記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB,CD都是的直徑,連接DB,過點C的切線交DB的延長線于點E.
如圖1,求證:;
如圖2,過點A作交EC的延長線于點F,過點D作,垂足為點G,求證:;
如圖3,在的條件下,當時,在外取一點H,連接CH、DH分別交于點M、N,且,點P在HD的延長線上,連接PO并延長交CM于點Q,若,,,求線段HM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com