【題目】如圖,在ABCD中,,,,點E為CD上一動點,經(jīng)過A、C、E三點的交BC于點F.
(操作與發(fā)現(xiàn))
當(dāng)E運動到處,利用直尺與規(guī)作出點E與點F;保留作圖痕跡
在的條件下,證明:.
(探索與證明)
點E運動到任何一個位置時,求證:;
(延伸與應(yīng)用)
點E在運動的過程中求EF的最小值.
【答案】作圖見解析;證明見解析;證明見解析; EF最小值為.
【解析】
當(dāng),此時AC是的直徑,作出AC的中點O后,以OA為半徑作出即可作出點E、F;
易知AC為直徑,則,,從而得證;
如圖,作,,若E在DN之間,由可知,,然后再證明∽,從而可知,若E在CN之間時,同理可證;
由于A、F、C、E四點共圓,所以,由于四邊形ABCD為平行四邊形,,從而可證為等腰直角三角形,所以,由于,所以E與N重合時,FE最。
如圖1所示,
如圖,易知AC為直徑,則,
則,
,
如圖,作,,若E在DN之間
由可知,
、F、C、E四點共圓,
,
,
,
,
∽
,
若E在CN之間時,同理可證
、F、C、E四點共圓,
,
四邊形ABCD為平行四邊形,,
,
,
,
為等腰直角三角形,
,
,
與N重合時,FE最小,
此時,
在中,,則
由勾股定理可知:
此時EF最小值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地.甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時.由于滿載貨物,為了行駛安全,速度減少了50km/h,結(jié)果與甲車同時到達B地.甲乙兩車距A地的路程y(km)與乙車行駛時間x(h)之間的函數(shù)圖象如圖所示,則下列說法中正確的有( )
①;②甲的速度是60km/h;③乙出發(fā)80min追上甲;④乙剛到達貨站時,甲距B地180km.
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,E為BC中點,AE⊥BC于點E,AF⊥CD于點F,CG∥AE,CG交AF于點H,交AD于點G.
(1)求菱形ABCD的面積;(2)求∠CHA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.(1)請用兩種不同的方法求圖②中陰影部分的面積:
方法1: 方法2:
(2)觀察圖②請你寫出下列三個代數(shù)式:(m+n)2,(m﹣n)2,mn之間的等量關(guān)系. ;
(3)根據(jù)(2)題中的等量關(guān)系,解決:已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距480km,一輛貨車從甲地勻速駛往乙地,貨車出發(fā)一段時間后,一輛汽車從乙地勻速駛往甲地,設(shè)貨車行駛的時間為線段OA表示貨車離甲地的距離與xh的函數(shù)圖象;折線BCDE表示汽車距離甲地的距離與的函數(shù)圖象.
求線段OA與線段CD所表示的函數(shù)表達式;
若OA與CD相交于點F,求點F的坐標(biāo),并解釋點F的實際意義;
當(dāng)x為何值時,兩車相距100千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們有時會碰上形如,,的式子,其實我們可以將其進一步分母有理化.
形如的式子還可以用以下方法化簡:.(*)
(1)請用不同的方法化簡(寫出化簡過程):
(i)參照分母有理化的方法得______________________________;
(ii)參照(*)式的化簡方法得______________________________.
(2)化簡:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的面積為1cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B…;依此類推,則平行四邊形AO2016C2017B的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com