【題目】如圖,在平面直角坐標系中,直線y=2x+b(b<0)與坐標軸交于A,B兩點,與雙曲線y=(x>0)交于D點,過點D作DC⊥x軸,垂足為C,連接OD.已知△AOB∽△ACD,相似比為.
(1)如果b=﹣2,求k的值;
(2)試探究k與b的數(shù)量關(guān)系,并直接寫出直線OD的解析式.
【答案】(1)k=12;(2)k=3b2.直線OD的解析式為:y=x.
【解析】
試題分析:(1)首先求出直線y=2x﹣2與坐標軸交點的坐標,然后由△AOB≌△ACD得到CD=OB,AO=AC,即可求出D坐標,由點D在雙曲線y=( x>0)的圖象上求出k的值;
(2)首先直線y=2x+b與坐標軸交點的坐標為A(﹣,0),B(0,b),再根據(jù)△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐標,把D點坐標代入反比例函數(shù)解析式求出k和b之間的關(guān)系,進而也可以求出直線OD的解析式.
解:(1)當b=﹣2時,直線y=2x﹣2與坐標軸交點的坐標為A(1,0),B(0,﹣2).
∵△AOB∽△ACD,
∴CD=2OB,AO=2AC,
∴點D的坐標為(3,4).
∵點D在雙曲線y=( x>0)的圖象上,
∴k=3×4=12.
(2)直線y=2x+b與坐標軸交點的坐標為A(﹣,0),B(0,b).
∵△AOB∽△ACD,
∴CD=2OB,AC=2AO,
∴點D的坐標為(b,2b)
∵點D在雙曲線y=( x>0)的圖象上,
∴k=()(2b)=3b2,即k與b的數(shù)量關(guān)系為:k=3b2.
直線OD的解析式為:y=x.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O是坐標原點,矩形OABC的位置如圖所示,點A,C的坐標分別為(10,0),(0,8).點P是y軸正半軸上的一個動點,將△OAP沿AP翻折得到△O′AP,直線BC與直線O′P交于點E,與直線OA'交于點F.
(1)當點P在y軸正半軸,且∠OAP=30°時,求點O′的坐標;
(2)當O′落在直線BC上時,求直線O′A的解析式;
(3)當點P在矩形OABC邊OC的運動過程中,是否存在某一時刻,使得線段CF與線段OP的長度相等?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】亞健康是時下社會熱門話題,進行體育鍛煉是遠離亞健康的一種重要方式,為了解某市初中學生每天進行體育鍛煉的時間情況,隨機抽樣調(diào)查了100名初中學生,根據(jù)調(diào)查結(jié)果得到如圖所示的統(tǒng)計圖表.
類別 | 時間t(小時) | 人數(shù) |
A | t≤0.5 | 5 |
B | 0.5<t≤1 | 20 |
C | 1<t≤1.5 | a |
D | 1.5<t≤2 | 30 |
E | t>2 | 10 |
(1)a= ;
(2)補全條形統(tǒng)計圖;
(3)據(jù)了解該市大約有30萬名初中學生,請估計該市初中學生每天進行體育鍛煉時間在1小時以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了抓住市文化藝術(shù)節(jié)的商機,某商店決定購進A,B兩種藝術(shù)節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,
B種紀念品6件,需要800元.
(1)求購進A,B兩種紀念品每件各需多少元?
(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com