【題目】如圖,在正方形ABCD的每個頂點上寫一個數(shù),把這個正方形每條邊的兩端點上的數(shù)加起來,將和寫在這條邊上,已知AB上的數(shù)是3,BC上的數(shù)是7,CD上的數(shù)是12,則AD上的數(shù)是( 。

A.2
B.7
C.8
D.15

【答案】C
【解析】解:設(shè)A端點數(shù)為x,B點為y,則C點為:7﹣y,D點為:z,
根據(jù)題意可得:x+y=3①,C點為:7﹣y,故z+7﹣y=12②,
故①+②得:
x+y+z+7﹣y=12+3,
故x+z=8,
即AD上的數(shù)是:8.
故選:C.
【考點精析】利用解三元一次方程組對題目進行判斷即可得到答案,需要熟知通過“代入”或“加減”消元,把“三元”化為“二元”,使解三元一次方程組轉(zhuǎn)化為解二元一次方程組,進而轉(zhuǎn)化為解一元一次方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三角形的三邊之比為5∶12∶13,它的周長為60,則它的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC和DEF均是邊長為4的等邊三角形,DEF的頂點D為ABC的一邊BC的中點,DEF繞點D旋轉(zhuǎn),且邊DF、DE始終分別交ABC的邊AB、AC于點H、G,圖中直線BC兩側(cè)的圖形關(guān)于直線BC成軸對稱.連結(jié)HH′、HG、GG′、H′G′,其中HH′、GG′分別交BC于點I、J.

(1)求證:DHB∽△GDC;

(2)設(shè)CG=x,四邊形HH′G′G的面積為y,

求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍.

求當x為何值時,y的值最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡,合并同類項
(1)7xy+xy3+4+6x﹣ xy3﹣5xy﹣3;
(2)2(2a﹣3b)+3(2b﹣3a);
(3)3(2x2﹣3xy)﹣2[x2﹣(2x2﹣xy+y2)];
(4)化簡求值:x2 [x﹣ (x2+x)],其中x=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點E,連接ACDE于點F,點GAF的中點,∠ACD=2∠ACB

1)說明DC=DG

2)若DG=13,EC=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,A=60°,AD=2,AB=3,點M,N分別為線段BC,AB上的動點(含端點,但點M不與點B重合),點E,F(xiàn)分別為DM,MN的中點,則EF長度的最大值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有甲、乙兩個小分隊分別同時從B、C兩地出發(fā)前往A地,甲沿線路BA行進,乙沿線路CA行進,已知C在A的南偏東55°方向,AB的坡度為1:5,同時由于地震原因造成BC路段泥石堵塞,在BC路段中位于A的正南方向上有一清障處H,負責(zé)搶修BC路段,已知BH為12000m.

(1)求BC的長度;

(2)如果兩個分隊在前往A地時勻速前行,且甲的速度是乙的速度的三倍.試判斷哪個分隊先到達A地.(tan55°≈1.4,sin55°≈0.84,cos55°≈0.6,5.01,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若代數(shù)式2x2+3y+7的值為8,那么代數(shù)式6x2+9y+8的值為(
A.1
B.11
C.15
D.23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名射擊愛好者7次射擊的中靶環(huán)數(shù)如下(單位:環(huán)):7,10,9,8,79,9,這7個數(shù)據(jù)的中位數(shù)是( 。

A.7環(huán)B.8環(huán)C.9環(huán)D.10環(huán)

查看答案和解析>>

同步練習(xí)冊答案