【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC.
(1)如圖1,填空∠B= °,∠C= °;
(2)若M為線段BC上的點(diǎn),過M作直線MH⊥AD于H,分別交直線AB、AC與點(diǎn)N、E,如圖2
①求證:△ANE是等腰三角形;
②試寫出線段BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.
【答案】(1)36,72;(2) ①詳見解析;②CD=BN+CE,理由見解析.
【解析】
試題(1)BA=BC,且DB=DA=AC可得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形內(nèi)角和可求得∠B,∠C;
(2)①由(1)可知∠BAD=∠CAD=36°,且∠AHN=∠AHE=90°,可求得∠ANH=∠AEH=54°,可得AN=AE;
②由①知AN=AE,借助已知利用線段的和差可得CD=BN+CE.
試題解析:(1)∵BA=BC,
∴∠BCA=∠BAC,
∵DA=DB,
∴∠BAD=∠B,
∵AD=AC,
∴∠ADC=∠C=∠BAC=2∠B,
∴∠DAC=∠B,
∵∠DAC+∠ADC+∠C=180°,
∴2∠B+2∠B+∠B=180°,
∴∠B=36°,∠C=2∠B=72°,
故答案為:36;72;
(2)①在△ADB中,∵DB=DA,∠B=36°,
∴∠BAD=36°,
在△ACD中,∵AD=AC,
∴∠ACD=∠ADC=72°,
∴∠CAD=36°,
∴∠BAD=∠CAD=36°,
∵M(jìn)H⊥AD,
∴∠AHN=∠AHE=90°,
∴∠AEN=∠ANE=54°,
∴AN=AE,
即△ANE是等腰三角形;
②CD=BN+CE.
證明:由①知AN=AE,
又∵BA=BC,DB=AC,
∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,
∴BN+CE=BC﹣BD=CD,
即CD=BN+CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張長(zhǎng)為8cm,寬為6cm的長(zhǎng)方形紙片上,現(xiàn)要剪下一個(gè)腰長(zhǎng)為5cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與長(zhǎng)方形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在長(zhǎng)方形的邊上).則剪下的等腰三角形的底邊長(zhǎng)可以是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對(duì)九年級(jí)全體學(xué)生進(jìn)行了一次學(xué)業(yè)水平測(cè)試,成績(jī)?cè)u(píng)定分為A,B,C,D四個(gè)等級(jí)(A,B,C,D分別代表優(yōu)秀、良好、合格、不合格)該校從九年級(jí)學(xué)生中隨機(jī)抽取了一部分學(xué)生的成績(jī),繪制成以下不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題;
(1)本次調(diào)查中,一共抽取了__名學(xué)生的成績(jī);
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整,寫出扇形統(tǒng)計(jì)圖中等級(jí)C的百分比__
(3)若等級(jí)D的5名學(xué)生的成績(jī)(單位:分)分別是55、48、57、51、55.則這5個(gè)數(shù)據(jù)的中位數(shù)是__分,眾數(shù)是__分.
(4)如果該校九年級(jí)共有500名學(xué)生,試估計(jì)在這次測(cè)試中成績(jī)達(dá)到優(yōu)秀的人數(shù)__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),射線與y軸的正半軸的夾角為45°,點(diǎn)B是射線上的動(dòng)點(diǎn).
(1)如圖25-1,當(dāng)線段的值最小時(shí),求點(diǎn)B的坐標(biāo);
(2)如圖25-2,且,軸交射線于點(diǎn)D,且,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知: ,點(diǎn)……在射線ON上,點(diǎn)……在射線OM上,△、△、△……均為等邊三角形,若,則△的邊長(zhǎng)為( )
A. 6 B. 12 C. 32 D. 64
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時(shí),車載電腦顯示還有4升油.假設(shè)加油前、后汽車都以100千米小時(shí)的速度勻速行駛,已知油箱中剩余油量(升)與行駛時(shí)間(小時(shí))之間的關(guān)系如圖所示.
(1)求張師傅加油前油箱剩余油量(升)與行駛時(shí)間(小時(shí))之間的關(guān)系式;
(2)求出的值;
(3)求張師傅途中加油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請(qǐng)你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com