【題目】某校為了了解本校七年級學(xué)生課外閱讀的喜好,隨機抽取該校七年級部分學(xué)生進(jìn)行問卷調(diào)査(每人只選一種書籍).如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動一共調(diào)查了________名學(xué)生;
(2)在扇形統(tǒng)計圖中,“其他”所在扇形的圓心角等于__________度;
(3)補全條形統(tǒng)計圖;
(4)若該年級有600名學(xué)生,請你估計該年級喜歡“科普常識”的學(xué)生人數(shù)約是__________.
【答案】(1)200 (2)36° (3)如圖
(4)180
【解析】分析:(1)根據(jù)條形圖可知喜歡閱讀“小說”的有80人,根據(jù)在扇形圖中所占比例得出調(diào)查學(xué)生總數(shù);
(2)根據(jù)條形圖可知閱讀“其他”的有20人,根據(jù)總?cè)藬?shù)可求出它在扇形圖中所占比例;
(3)求出第3組人數(shù)畫出圖形即可;
(4)根據(jù)喜歡閱讀“科普常識”的學(xué)生所占比例,即可估計該年級喜歡閱讀“科普常識”的人數(shù).
解:(1)80÷40%=200(人),
故這次活動一共調(diào)查了200名學(xué)生.
(2)20÷200×360°=36°,
故在扇形統(tǒng)計圖中,“其他”所在扇形的圓心角等于36°.
(3)200-80-40-20=60(人),
即喜歡閱讀“科普常識”的學(xué)生有60人,
補全條形統(tǒng)計圖如圖所示:
(4)60÷200×100%=30%,
600×30%=180(人),
故估計該年級喜歡閱讀“科普常識”的人數(shù)為180.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲種鉛筆每支0.4元,乙種鉛筆每支0.6元,某同學(xué)共購買了這兩種鉛筆30支,并且買乙種鉛筆所花的錢是買甲種鉛筆所花的錢的3倍.
(1)該同學(xué)購買甲乙兩種鉛筆各多少支?
(2)求該同學(xué)購買這兩種鉛筆共花了多少元錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx﹣1(a≠0)的圖象經(jīng)過點(1,1),則代數(shù)式1﹣a﹣b的值為( )
A.﹣3
B.﹣1
C.2
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的課外書制作的條形統(tǒng)計圖的高度之比為2:3:4:1,則乙的課外書的本數(shù)為( 。
A.6本
B.9本
C.11本
D.12本
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家電信公司推出兩種移動電話計費方法:計費方法是每月收月租費元,通話時間不超過分鐘的部分免費,超過分的按每分鐘元加收通話費;計費方法是每月收月租費元,通話時間不超過分鐘的部分免費,超過分的按每分鐘元加收通話費.設(shè)通話時間為分.
()用代數(shù)式表示通話分鐘的通話費用.
()用計費方法的用戶一個月累計通話分鐘所需的話費,若改用計費方法,則可多通話多少分鐘?
()按, 兩種計費方法,所需的話費會相等嗎?如果會,請指出相等的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,下列結(jié)論正確的是( 。
A.sinA=sinBB.sinA=cosB
C.tanA=tanBD.sinA+sinB=sinC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.
(1)b =_________,c =_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com