【題目】某工廠餐廳計(jì)劃購買12張餐桌和一批餐椅,現(xiàn)在從甲、乙兩商場了解到,同一型號(hào)的餐桌報(bào)價(jià)每張均為200元,餐椅報(bào)價(jià)每把均為50元,甲商場做活動(dòng),每購買一張餐桌贈(zèng)送一把餐椅。乙商場的活動(dòng)是所有桌椅均按報(bào)價(jià)的八五折銷售。若該工廠計(jì)劃購買餐椅 (12)把,則:

1)當(dāng)購買40把餐椅時(shí),到哪家商場購買劃算?

2)用含的代數(shù)式表示到甲、乙兩商場購買所需要的費(fèi)用。

3)當(dāng)購買多少把餐椅時(shí),到甲、乙兩商場購買所需要的費(fèi)用相同?

【答案】1)當(dāng)購買桌椅40把時(shí),到乙商場去買劃算;(2,;(3)當(dāng)購買32把餐椅時(shí),到甲、乙兩商場購買所需要的費(fèi)用相同.

【解析】

1)分別計(jì)算甲乙兩個(gè)商家所需要的費(fèi)用,進(jìn)行比較,即可得到答案;

2)根據(jù)題意,找出等量關(guān)系,列出關(guān)系式即可;

3)由(2)的結(jié)論,令兩個(gè)商家的費(fèi)用相等,即可求出椅子的數(shù)量.

解:(1時(shí),

元,

元,

38003740 ,

∴乙合適;

∴當(dāng)購買桌椅40把時(shí),到乙商場去買劃算。

2)設(shè)購買12張餐桌和把餐椅,到購買甲商場的費(fèi)用為元,到乙商場購買的費(fèi)用為. 由題意得:

;

3)到甲、乙兩商場購買所需要的費(fèi)用相同,

,則

,

解得:

∴當(dāng)購買32把餐椅時(shí),到甲、乙兩商場購買所需要的費(fèi)用相同.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 明天降雨的概率是60%”表示明天有60%的時(shí)間都在降雨

B. 拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. 彩票中獎(jiǎng)的概率為1%”表示買100張彩票肯定會(huì)中獎(jiǎng)

D. 拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為表示隨著拋擲次數(shù)的增加,拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC120°.將一直角三角形的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請(qǐng)說明理由;

2)將圖1中的三角板繞點(diǎn)O按每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為  (直接寫出結(jié)果);

3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,OD為∠BOM平分線.請(qǐng)?zhí)骄浚骸?/span>MOD與∠NOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知線段,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖1所示.

(1)平移線段到線段,使點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,若點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo);

(2)平移線段到線段,使點(diǎn)軸的正半軸上,點(diǎn)在第二象限內(nèi)(對(duì)應(yīng), 對(duì)應(yīng)),連接如圖2所示.表示△BCD的面積),求點(diǎn)、的坐標(biāo);

(3)(2)的條件下,在軸上是否存在一點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說明理由;

(3)當(dāng)△BDM為直角三角形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時(shí),求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【閱讀學(xué)習(xí)】 劉老師提出這樣一個(gè)問題:已知α為銳角,且tanα=,求sin2α的值.

小娟是這樣解決的:

如圖1,在⊙O中,AB是直徑,點(diǎn)C⊙O上,∠BAC=α,所以∠ACB=90°,tanα==

易得∠BOC=2α.設(shè)BC=x,則AC=3x,則AB=x.作CD⊥ABD,求出CD= (用含x的式子表示),可求得sin2α==

【問題解決】

已知,如圖2,點(diǎn)M、NP為圓O上的三點(diǎn),且∠P=β,tanβ =,求sin2β的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列運(yùn)算:818,8264,83512,844 096,8532 768,86262 144,,則8182838482 01882 019的和的個(gè)位數(shù)字是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y12x與直線y2=﹣2x+4相交于點(diǎn)A.以下結(jié)論:

①點(diǎn)A的坐標(biāo)為A1,2);②當(dāng)x1時(shí),兩個(gè)函數(shù)值相等:

③當(dāng)x1時(shí),y1y2;  ④直線y12x與直線y2=﹣2x+4在平面直角坐標(biāo)系中的位置關(guān)系是平行.其中正確的個(gè)數(shù)有( 。﹤(gè).

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習(xí)冊答案