【題目】如圖,已知Rt△ABC中,∠ACB=90°,以斜邊AB為邊向外作正方形ABDE,且正方形的對角線交于點O,連結OC.已知AC=5,OC=6,則另一直角邊BC的長為 .
【答案】4
【解析】試題分析:過O作OF垂直于BC,再過A作AM垂直于OF,由四邊形ABDE為正方形,得到OA=OB,∠AOB為直角,可得出兩個角互余,再由AM垂直于MO,得到△AOM為直角三角形,其兩個銳角互余,利用同角的余角相等可得出一對角相等,再由一對直角相等,OA=OB,利用AAS可得出△AOM與△BOF全等,由全等三角形的對應邊相等可得出AM=OF,OM=FB,由三個角為直角的四邊形為矩形得到ACFM為矩形,根據(jù)矩形的對邊相等可得出AC=MF,AM=CF,等量代換可得出CF=OF,即△COF為等腰直角三角形,由斜邊OC的長,利用勾股定理求出OF與CF的長,根據(jù)OF﹣MF求出OM的長,即為FB的長,由CF+FB即可求出BC的長.解法一:如圖1所示,過O作OF⊥BC,過A作AM⊥OF,∵四邊形ABDE為正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中, ,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四邊形ACFM為矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF為等腰直角三角形,∵OC=6,∴根據(jù)勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,則BC=CF+BF=6+1=7.故答案為:7.解法二:如圖2所示,過點O作OM⊥CA,交CA的延長線于點M;過點O作ON⊥BC于點N.易證△OMA≌△ONB,∴OM=ON,MA=NB.∴O點在∠ACB的平分線上,∴△OCM為等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案為:7.
科目:初中數(shù)學 來源: 題型:
【題目】小紅將筆記本電腦水平放置在桌子上,顯示屏OB與底板OA所在的水平線的夾角為120°時,感覺最舒適(如圖1),側面示意圖為圖2;使用時為了散熱,她在底板下墊入散熱架ACO′后,電腦轉到AO′B′位置(如圖3),側面示意圖為圖4.已知OA=OB=24cm,O′C⊥OA于點C,O′C=12cm.
(1)求∠CAO′的度數(shù);
(2)顯示屏的頂部B′比原來升高了多少?
(3)如圖4,墊入散熱架后,要使顯示屏O′B′與水平線的夾角仍保持120°,則顯示屏O′B′應繞點O′按順時針方向旋轉多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現(xiàn)在有如下4個結論:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4個結論中,正確的有( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市運會舉行射擊比賽,校射擊隊從甲、乙、丙、丁四人中選拔一人參賽.在選拔賽中,每人射擊10次,計算他們10發(fā)成績的平均數(shù)(環(huán))及方差如下表.請你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是 .
甲 | 乙 | 丙 | 丁 | |
平均數(shù) | 8.2 | 8.0 | 8.0 | 8.2 |
方差 | 2.1 | 1.8 | 1.6 | 1.4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)已知:如圖,△ABC中,D是AB的中點,E是AC上一點,EF∥AB,DF∥BE.
(1)猜想:DF與AE的關系是______.
(2)試說明你猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣4x+c+1=0有兩個相等的實數(shù)根,則常數(shù)c的值為( 。
A. ﹣1 B. 0 C. 1 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com