【題目】3張紙牌,分別是紅桃3、紅桃4和黑桃5(簡稱紅3,紅4,黑5).把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.

1)兩次抽得紙牌均為紅桃的概率;(請用畫樹狀圖列表等方法寫出分析過程)

2)甲、乙兩人做游戲,現(xiàn)有兩種方案.A方案:若兩次抽得花色相同則甲勝,否則乙勝.B方案:若兩次抽得紙牌的數(shù)字和為奇數(shù)則甲勝,否則乙勝.請問甲選擇哪種方案勝率更高?

【答案】1P(兩次抽得紙牌均為紅桃) =;(2甲選擇A方案勝率更高,理由見解析.

【解析】分析: (1)首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果;

(2)首先求得A方案與B方案中甲勝的概率,比較大小,即可確定甲選擇哪種方案勝率更高.

詳解:

解:(1)樹狀圖:

列表:

紅桃3

紅桃4

黑桃5

紅桃3

(紅3,紅3

(紅3,紅4

(紅3,黑5

紅桃4

(紅4,紅3

(紅4,紅4

(紅4,黑5

黑桃5

(黑5,紅3

(黑5,紅4

(黑5,黑5

∴一共有9種等可能的結(jié)果,其中符合要求的共4,

P(兩次抽得紙牌均為紅桃)=

2∵兩次抽得相同花色的有5種,兩次抽得數(shù)字和為奇數(shù)有4種,

A方案:P(甲勝)=,

B方案:P(甲勝)=

∴甲選擇A方案勝率更高.

點(diǎn)睛: 本題考查的是用列表法或畫樹狀圖法求概率.注意列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實兩點(diǎn)確定一條直線來解釋的是( 。

①用兩顆釘子就可以把木條固定在墻上;②把筆尖看成一個點(diǎn),當(dāng)這個點(diǎn)運(yùn)動時便得到一條線;③把彎曲的公路改直,就能縮短路程;④植樹時,只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OM上有三點(diǎn)A,B,C,滿足OA=20cm,AB=60cm,BC=10cm,動點(diǎn)PO點(diǎn)出發(fā)沿OM方向以每秒1cm的速度勻速運(yùn)動;動點(diǎn)Q從點(diǎn)C出發(fā),在線段CO上向點(diǎn)O勻速運(yùn)動(點(diǎn)Q運(yùn)動到點(diǎn)O時,立即停止運(yùn)動),點(diǎn)P,Q同時出發(fā).

(1)當(dāng)點(diǎn)P與點(diǎn)Q都同時運(yùn)動到線段AB的中點(diǎn)時,求點(diǎn)Q的運(yùn)動速度;

(2)若點(diǎn)Q運(yùn)動速度為每秒3cm時,經(jīng)過多少時間P,Q兩點(diǎn)相距70cm;

(3)當(dāng)PA=2PB時,點(diǎn)Q運(yùn)動的位置恰好是線段AB的三等分,求點(diǎn)Q的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 的直徑,CD 相切于C, .

1)求證:BC 的平分線.

2)若DC=8 的半徑OA=6,求CE的長.

【答案】1證明見解析;(24.8

【解析】分析:(1)由,推出,由,推出,可得.2)在中,求出OD,由,可得,由此即可解決問題.

詳解:(1)證明:因為,

所以,

又因為,

所以,

故可得,

即可得的平分線.

2)因為DE的切線,

所以,即在中,DC=8,OC=OA=6,所以

又因為

所以,

所以,

即可得EC=4.8

點(diǎn)睛:本題主要考查了切線的性質(zhì)及相似三角形的應(yīng)用,題目難度適中,會綜合運(yùn)用所考查的知識點(diǎn)是解題的關(guān)鍵.

型】解答
結(jié)束】
23

【題目】食品安全受到全社會的廣泛關(guān)注,濟(jì)南市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩份尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為_____.

2)請補(bǔ)全條形統(tǒng)計圖.

3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對食品安全知識達(dá)到了解基本了解程度的總?cè)藬?shù).

4)若從對食品安全知識達(dá)到了解程度的2個女生和2個男生中隨機(jī)抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,點(diǎn)D,E分別在AC,BC上,且CDE=B,將CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人去南方批發(fā)茶葉,在某地A批發(fā)市場以每包m元的價格進(jìn)了40包茶葉,又到B批發(fā)市場時發(fā)現(xiàn)同樣的茶葉比A批發(fā)市場要便宜,每包的價格僅為n元,因此他又在B批發(fā)市場進(jìn)了60包同樣的茶葉.如果他銷售時以每包元的價格全部賣出這批茶葉,那么在不考慮其它因素的情況下他的這次買賣( 。

A.一定盈利B.一定虧損

C.不盈不虧D.盈虧不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方法感悟:

1)如圖①,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長最?若存在,求出它周長的最小值;若不存在,請說明理由.

問題解決:

2)如圖②,有一矩形板材ABCDAB=3米,AD=6米,現(xiàn)想從此板材中裁出一個面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、FG分別在邊AD、ABBC上,且AFBF,并滿足點(diǎn)H在矩形ABCD內(nèi)部或邊上時,才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積,并寫出在以B為坐標(biāo)原點(diǎn),直線BCx軸,直線BAy軸的坐標(biāo)系中,點(diǎn)H的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)A對應(yīng)的數(shù)是﹣1B點(diǎn)對應(yīng)的數(shù)是1,一只小蟲甲從點(diǎn)B出發(fā)沿著數(shù)軸的正方向以每秒4個單位的速度爬行至C點(diǎn),再立即返回到A點(diǎn),共用了4秒鐘.

1)求點(diǎn)C對應(yīng)的數(shù);

2)若小蟲甲返回到A點(diǎn)后再作如下運(yùn)動:第1次向右爬行2個單位,第2次向左爬行4個單位,第3次向右爬行6個單位,第4次向左爬行8個單位,依次規(guī)律爬下去,求它第10次爬行所停在點(diǎn)所對應(yīng)的數(shù);

3)若小蟲甲返回到A后繼續(xù)沿著數(shù)軸的負(fù)方向以每秒4個單位的速度爬行,這時另一小蟲乙從點(diǎn)C出發(fā)沿著數(shù)軸的負(fù)方向以每秒7個單位的速度爬行,設(shè)甲小蟲對應(yīng)的點(diǎn)為E點(diǎn),乙小蟲對應(yīng)的點(diǎn)為F點(diǎn),設(shè)點(diǎn)A、E、F、B所對應(yīng)的數(shù)分別是xA、xExF、xB,當(dāng)運(yùn)動時間t不超過1秒時,請你結(jié)合數(shù)軸求出 |xAxE ||xExF |+ |xFxB |= .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,AE⊥BC,垂足為點(diǎn)E,CE=CD,點(diǎn)FCE的中點(diǎn)點(diǎn)GCD上的一點(diǎn),連接DF,EG,AG,∠1=∠2.

(1)CF=2,AE=3,BE的長;

(2)求證:∠CEG=∠AGE.

查看答案和解析>>

同步練習(xí)冊答案