【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機(jī)抽取了50名同學(xué)進(jìn)行“舌尖上的滄州——我最喜愛的滄州小吃”調(diào)查活動,將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計(jì)圖:
調(diào)查問卷
在下面四種滄州小吃中,你最喜愛的是(____)(單選)
A.泊頭老豆腐 B.羊腸子 C.連鎮(zhèn)燒雞 D.油酥燒餅
請根據(jù)所給信息解答以下問題:
(1)請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若全校有2000名同學(xué),請估計(jì)全校同學(xué)中最喜愛“泊頭老豆腐”的同學(xué)有多少人?
【答案】C
【解析】試題分析:(1)根據(jù)總?cè)藬?shù)為50,結(jié)合條形統(tǒng)計(jì)圖中的數(shù)據(jù),求出喜歡“連鎮(zhèn)燒雞”的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖即可;
(2)求出調(diào)查中喜歡“泊頭老豆腐”的百分比,然后乘以2000即可得到結(jié)果;
試題解析:(1)根據(jù)題意得喜歡“連鎮(zhèn)燒雞”人數(shù)為50-(14+21+5)=10(人),
補(bǔ)全統(tǒng)計(jì)圖,如圖所示:
(2)根據(jù)題意得 (人),則估計(jì)全校同學(xué)中最喜愛“泊頭老豆腐”的同學(xué)有560人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司要將一批貨物運(yùn)往某地,打算租用某汽車運(yùn)輸公司的甲.乙兩種貨車,以前租用這兩種貨車的信息如下表所示;
第一次 | 第二次 | |
甲種貨車輛數(shù)/輛 | 2 | 5 |
乙種貨車輛數(shù)/輛 | 3 | 6 |
累計(jì)運(yùn)貨量/噸 | 15.5 | 35 |
現(xiàn)打算租用該公司4輛甲種貨車和6輛乙種貨車,可一次剛好運(yùn)完這批貨物.如果每噸運(yùn)費(fèi)為50元,該公司應(yīng)付運(yùn)費(fèi)________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩同學(xué)用兩枚質(zhì)地均勻的骰子作游戲,規(guī)則如下:每人隨機(jī)擲兩枚骰子一次(若擲出的兩枚骰子摞在一起,則重?cái)S),點(diǎn)數(shù)和大的獲勝;點(diǎn)數(shù)和相同為平局. 根據(jù)上述規(guī)則,解答下列問題;
(1)隨機(jī)擲兩枚骰子一次,用列表法求點(diǎn)數(shù)和為8的概率;
(2)甲先隨機(jī)擲兩枚骰子一次,點(diǎn)數(shù)和是7,求乙隨機(jī)擲兩枚骰子一次獲勝的概率. (骰子:六個面分別有1、2、3、4、5、6個小圓點(diǎn)的立方塊.點(diǎn)數(shù)和:兩枚骰子朝上的點(diǎn)數(shù)之和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某停車場收費(fèi)標(biāo)準(zhǔn)分為中型汽車和小型汽車兩種,某兩天這個停車場的收費(fèi)情況如下表:
中型汽車數(shù)量 | 小型汽車數(shù)量 | 收取費(fèi)用 | |
第一天 | 15輛 | 35輛 | 360元 |
第二天 | 18輛 | 20輛 | 300元 |
(1)中型汽車和小型汽車的停車費(fèi)每輛多少元?
(2)某天停車場共停車70輛,若收取的停車費(fèi)用高于500元,則中型汽車至少有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OD恰為∠BOE的平分線.
(1)圖中∠BOC的補(bǔ)角是 把符合條件的角都填出來);
(2)若∠AOD=145°,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C(0,3).且點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)P是拋物線上第一象限內(nèi)的一個點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)連PO、PB,如果把△POB沿OB翻轉(zhuǎn),所得四邊形POP′B恰為菱形,那么在拋物線的對稱軸上是否存在點(diǎn)Q,使△QAB與△POB相似?若存在求出點(diǎn)Q的坐標(biāo);若不存在,說明理由;
(3)若(2)中點(diǎn)Q存在,指出△QAB與△POB是否位似?若位似,請直接寫出其位似中心的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com