【題目】如圖,點(diǎn)、、、上,于點(diǎn),,,延長線上一點(diǎn),且,

求證:的切線;

若點(diǎn)是弧的中點(diǎn),且于點(diǎn),求的長.

【答案】(1)證明見解析(2)

【解析】

(1)連結(jié)AC,先求得AC是直徑,從而求得∠D=ACB,根據(jù)已知得出AB=6,然后根據(jù)勾股定理求得AC,根據(jù)勾股定理逆定理證得∠CAH=90°CAAH,即可證得結(jié)論;
(2)由點(diǎn)D是弧CE的中點(diǎn),得出∠EAD=∠DAC,進(jìn)而求得∠EAH=∠HCA,然后求得∠AFH=∠HAF,根據(jù)等角對等邊得出HF=HA=,最后根據(jù)射影定理得出AH2=EHCH,即可求得EH的值,進(jìn)而求得EF的值.

證明:連結(jié),

于點(diǎn)

的直徑,

,

,

中,,

,

由勾股定理,

中,由勾股定理逆定理:

,

的切線.

解:∵點(diǎn)是弧的中點(diǎn),

,

的直徑,

,

,

,

,

,

,,

可得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ACB=90°,ABC=60°,BC=2cm,DBC的中點(diǎn),若動點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動,設(shè)E點(diǎn)的運(yùn)動時間為t秒(0≤t6),連接DE,當(dāng)BDE是直角三角形時,t的值為

A、2 B、2.53.5 C、3.54.5 D、23.54.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合肥地鐵一號線的開通運(yùn)行給合肥市民出行方式帶來了一些變化,小朱和小張準(zhǔn)備利用課余時間,以問卷的分式對合肥市民的出行方式進(jìn)行調(diào)查,如圖是合肥地鐵一號線圖(部分),小朱和小張分別從塘西河公園站(用A表示)、金斗公園站(用B表示)、云谷路站(用C表示)、萬達(dá)城站(用D表示)這四站中,隨機(jī)選取一站作為調(diào)查的站點(diǎn).

(1)在這四站中,小朱選取問卷調(diào)查的站點(diǎn)是萬達(dá)城站的概率是多少?

(2)求小朱選取問卷調(diào)查的站點(diǎn)與小張選取問卷調(diào)查的站點(diǎn)相鄰的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形的邊長為,點(diǎn),,,分別在正方形的四條邊上,且,則四邊形的形狀為________,它的面積的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩個村莊的坐標(biāo)分別為(2,2)、(7,4),一輛汽車從原點(diǎn)O出發(fā),在x軸上行駛.

(1)汽車行駛到什么位置時離村莊A最近?寫出此位置的坐標(biāo).

(2)汽車行駛到什么位置時離村莊B最近?寫出此位置的坐標(biāo).

(3)請?jiān)趫D中畫出汽車到兩村莊的距離和最短的位置,并求出此最短的距離和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以扇形的頂點(diǎn)為原點(diǎn),半徑所在的直線為軸,建立平面直角坐標(biāo)系,點(diǎn)的坐標(biāo)為.現(xiàn)從中隨機(jī)選取一個數(shù)記為,則的值既使得拋物線與扇形的邊界有公共點(diǎn),又使得關(guān)于的方程的解是正數(shù)的概率是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長度是 (  )

A. B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車4S店銷售某種型號的汽車,每輛進(jìn)貨價為15萬元,該店經(jīng)過一段時間的市場調(diào)研發(fā)現(xiàn):當(dāng)銷售價為25萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出1輛.該4S店要想平均每周的銷售利潤為90萬元,并且使成本盡可能的低,則每輛汽車的定價應(yīng)為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A(3,4),C在x軸的負(fù)半軸,拋物線y=(x2)2+k過點(diǎn)A.

(1)求k的值;

(2)若把拋物線y=(x2)2+k沿x軸向左平移m個單位長度,使得平移后的拋物線經(jīng)過菱形OABC的頂點(diǎn)C.試判斷點(diǎn)B是否落在平移后的拋物線上,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案