【題目】如圖,在矩形ABCD中,AB=m,BC=8,E為線段BC上的動點(不與B,C重合),連接DE,作EF⊥DE,EF與射線BA交于點F,設(shè)CE=x,BF=y,若,當DEF為等腰三角形時,m的值為_________.
【答案】2或6.
【解析】
利用互余關(guān)系找角相等,證明△BEF∽△CDE,根據(jù)對應(yīng)邊的比相等表示出y,從而求出x,因為∠DEF=90°,所以當DE=EF時,△DEF為等腰三角形,據(jù)此可得△BEF≌△CDE從而得到BE=CD,進而可求出m的值.
∵EF⊥DE,
∴∠BEF=90°﹣∠CED=∠CDE,
又∵∠B=∠C=90°,
∴△BEF∽△CDE,
∴ 即 ,
解得,
當 時,= , 解得x1=2,x2=6
∵∠DEF=90°,
∴只有當DE=EF時,△DEF為等腰三角形,
∴△BEF≌△CDE,
∴BE=CD,
又∵BE=BC-CE=8-x,CD=AB=m,
∴m=8-x,
當x=2時,m=6;當x=6時,m=2.
即m的值為6或2時,△DEF為等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以點A和點C為圓心,以大于AC的長為半徑作弧,兩弧相交于M、N兩點;②作直線MN交BC于點D,連接AD.若AB=BD,AB=6,∠C=30°,則△ACD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接AC,做△ABC的外接圓⊙O,延長EC交⊙O于點D,連接BD、AD,BC與AD交于點F分,∠ABC=∠ADB。
(1)求證:AE是⊙O的切線;
(2)若AE=12,CD=10,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某華為手機專賣店銷售臺A型手機和臺B型手機的利潤為元,銷售A型手機和臺B型手機的利潤為元.
求每臺A型手機和B型手機的利潤;
專賣店計劃購進兩種型號的華為手機共臺,其中B型手機的進貨量不低于A型手機的倍,設(shè)購進的A型手機臺,這臺手機全部銷售的總利潤為元.
②直接寫出關(guān)于的函數(shù)關(guān)系式為 ,的取值范圍是 ;
②該商店如何進貨才能使銷售總利潤最大?說明原因.
專賣店預(yù)算員按照中的方案準備進貨,同時專賣店對A型手機銷售價格下調(diào)元,結(jié)果預(yù)算員發(fā)現(xiàn)無論按照哪種進貨方案最后銷售總利潤不變,請你直接寫出的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD的邊AB上任取一點點P不與A,B重合,分別連接PD,PC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把P叫四邊形ABCD的邊AB上的“相似點”;如果這三個三角形都相似,我們就把P叫做四邊形ABCD的邊AB上的“強相似點“.
解決問題
如圖,,試判斷點P是否是四邊形ABCD的邊AB上的相似點,并說明理由.
如圖,在四邊形ABCD中,A,B,C,D四點均在正方形網(wǎng)格網(wǎng)格中每個小正方形的邊長為的格點即每個小正方形的頂點上,試在圖中畫出四邊形ABCD的邊BC上的相似點,并寫出對應(yīng)的相似三角形;
如圖,在四邊形ABCD中,,,,點P在邊BC上,若點P是四邊形ABCD的邊BC上的一個強相似點,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解在校初中生閱讀數(shù)學(xué)文化史類書籍的現(xiàn)狀,隨機抽取了初中部部分學(xué)生進行研究調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的的統(tǒng)計圖表,請你根據(jù)圖表中的信息解答下列問題:
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | C |
說不清楚 | 9 | 0.06 |
(1)求表格中a,b,c的值,并補全統(tǒng)計圖;
(2)若該校共有初中生2400名,請估計該校“不重視”閱讀數(shù)學(xué)文化史書籍的初中生人數(shù);
(3)若小明和小華去書店,打算從A,B,C,D四本數(shù)學(xué)文化史類書籍中隨機選取一本,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一本書籍的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AB=9,BC=12,點D是BC的中點,聯(lián)結(jié)AD,AD=9,點E在AD邊上,且,聯(lián)結(jié)BE.
(1)求證:△BED∽△ABD;
(2)聯(lián)結(jié)CE,求∠CED 的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.
(1)求每個排球和籃球的價格:
(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數(shù)少于39個.設(shè)排球的個數(shù)為m,總費用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學(xué)校按怎樣的方案購買時,費用最低?最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四川省蘆山縣4月20日發(fā)生了7.0級強烈地震,政府為了盡快搭建板房安置災(zāi)民,給某廠下達了生產(chǎn)A種板材48000m2和B種板材24000m2的任務(wù).
⑴如果該廠安排280人生產(chǎn)這兩種板材,每人每天能生產(chǎn)A種板材60 m2或B種板材40 m2,請問:應(yīng)分別安排多少人生產(chǎn)A種板材和B種板材,才能確保同時完成各自的生產(chǎn)任務(wù)?
⑵某災(zāi)民安置點計劃用該廠生產(chǎn)的兩種板材搭建甲、乙兩種規(guī)格的板房共400間,已知建設(shè)一間甲型板房和一間乙型板房所需板材及安置人數(shù)如下表所示:
板房 | A種板材(m2) | B種板材(m2) | 安置人數(shù) |
甲型 | 110 | 61 | 12 |
乙型 | 160 | 53 | 10 |
①共有多少種建房方案可供選擇?
②若這個災(zāi)民安置點有4700名災(zāi)民需要安置,這400間板房能否滿足需要?若不能滿足請說明理由;若能滿足,請說明應(yīng)選擇什么方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com