【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=-2x-8分別與x軸,y軸相交于A,B兩點,點P(0,k)是y軸的負(fù)半軸上的一個動點,以P為圓心,3為半徑作⊙P.
(1)若⊙P與x軸有公共點,則k的取值范圍是______.
(2)連接PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說明理由;
(3)當(dāng)⊙P與直線l相切時,k的值為______.
【答案】(1)-3≤k<0 ;(2)⊙P與x軸相切,見解析;(3)3-8或-8-3.
【解析】
(1)P點在y軸的負(fù)半軸,且半徑為3,由此可求k的取值范圍;
(2)由勾股定理求PA,根據(jù)PA=PB列方程求k的值,判斷⊙P與x軸的位置關(guān)系;
(3)過P點作PQ⊥AB,垂足為Q,根據(jù)△ABP的面積公式,利用面積法表示PQ,當(dāng)⊙P與直線l相切時,PQ=3,列方程求k即可.
解:(1)依題意,得k的取值范圍是-3≤k<0;
(2)由y=-2x-8得A(-4,0),B(0,-8),
由勾股定理,得PA=,
∵PB=8+k,
由PA=PB,得=8+k,
解得k=-3,
∴⊙P與x軸相切;
(3)過P點作PQ⊥AB,垂足為Q,
由PQ×AB=PB×OA,
PQ=,
當(dāng)⊙P與直線l相切時,PQ=3,即=3,
解得,
當(dāng)p在B下方時,
故答案為:-3≤k<0,或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則四邊形AB1OD的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠C=30°,點D是線段BC上的動點,將線段AD繞點A順時針旋轉(zhuǎn)60°至AD',連接BD'.若AB=2cm,則BD'的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,△ABC的三個頂點分別為A(﹣4,3),B(﹣1,2),C(﹣2,1).
(1)畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出點A1,B1、C1的坐標(biāo);
(2)畫出△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2,并寫出點A2,B2,C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=6,BC=8,以點C為圓心,CA的長為半徑的圓與AB、BC分別相交于點D、F,求圓心到AB的距離及AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題:
例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3
根據(jù)你的觀察,探究下面的問題:
(1)若x2+4x+4+y2﹣8y+16=0,求的值.
(2)試說明不論x,y取什么有理數(shù)時,多項式x2+y2﹣2x+2y+3的值總是正數(shù).
(3)已知a,b,c是△ABC的三邊長,滿足a2+b2=10a+8b﹣41,且c比a、b都大,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列的網(wǎng)格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點B的坐標(biāo)為(-3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點的坐標(biāo);
(3)根據(jù)(2)中的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并標(biāo)出B2、C2兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列n×n的正方形網(wǎng)格中,請按圖形的規(guī)律,探索以下問題:
(1)第④個圖形中陰影部分小正方形的個數(shù)為 ;
(2)是否存在陰影部分小正方形的個數(shù)是整個圖形中小正方形個數(shù)的?如果存在,是第幾個圖形;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將線段AB繞點A逆時針旋轉(zhuǎn)60°得AC,連接BC,作△ABC的外接圓⊙O,點P為劣弧上的一個動點,弦AB、CP相交于點D.
(1)求∠APB的大小;
(2)當(dāng)點P運動到何處時,PD⊥AB?并求此時CD:CP的值;
(3)在點P運動過程中,比較PC與AP+PB的大小關(guān)系,并對結(jié)論給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com