【題目】如圖,在矩形ABCD中,對(duì)角線AC的中點(diǎn)為O,點(diǎn)G,H在對(duì)角線AC上,AGCH,直線GH繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角,與邊AB、CD分別相交于點(diǎn)E、F(點(diǎn)E不與點(diǎn)A、B重合).

1)求證:四邊形EHFG是平行四邊形;

2)若∠α90°,AB9,AD3,求AE的長(zhǎng).

【答案】1)詳見(jiàn)解析;(2AE5

【解析】

1)由“ASA”可證COF≌△AOE,可得EOFO,且GOHO,可證四邊形EHFG是平行四邊形;

2)由題意可得EF垂直平分AC,可得AECE,由勾股定理可求AE的長(zhǎng).

證明:(1)∵對(duì)角線AC的中點(diǎn)為O

AOCO,且AGCH

GOHO

∵四邊形ABCD是矩形

ADBCCDAB,CDAB

∴∠DCA=∠CAB,且COAO,∠FOC=∠EOA

∴△COF≌△AOEASA

FOEO,且GOHO

∴四邊形EHFG是平行四邊形;

2)如圖,連接CE

∵∠α90°

EFAC,且AOCO

EFAC的垂直平分線,

AECE,

RtBCE中,CE2BC2+BE2

AE2=(9AE2+9,

AE5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準(zhǔn)備把“茶路”融入“絲路”,經(jīng)計(jì)算,他銷售10kgA級(jí)別和20kgB級(jí)別茶葉的利潤(rùn)為4000元,銷售20kgA級(jí)別和10kgB級(jí)別茶葉的利潤(rùn)為3500元.

(1)求每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤(rùn);

(2)若該經(jīng)銷商一次購(gòu)進(jìn)兩種級(jí)別的茶葉共200kg用于出口,其中B級(jí)別茶葉的進(jìn)貨量不超過(guò)A級(jí)別茶葉的2倍,請(qǐng)你幫該經(jīng)銷商設(shè)計(jì)一種進(jìn)貨方案使銷售總利潤(rùn)最大,并求出總利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O.MAD中點(diǎn),連接CMBD于點(diǎn)N,且ON=1.

(1)求BD的長(zhǎng);

(2)若DCN的面積為2,求四邊形ABNM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形(長(zhǎng)方形)沿折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)落在處,連接,則下列結(jié)論:①,②,③,④,三點(diǎn)在同一直線上,其中正確的是(

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AC、BD相交于點(diǎn)O,AE平分BAD,交BCE,若EAO=15°,則BOE的度數(shù)為 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分9分如圖,ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點(diǎn)分別為D,E,

1試判斷ABC的形狀,并說(shuō)明理由;

2已知半圓的半徑為5BC=12的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮想趁暑假去看世博會(huì),可是只有一張門票,誰(shuí)都想去,最后商定通過(guò)轉(zhuǎn)盤游戲來(lái)決定.他們準(zhǔn)備了如圖所示兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每一個(gè)扇形內(nèi)標(biāo)上數(shù)字,游戲規(guī)則是:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域的數(shù)字之和為時(shí),小明去:數(shù)字之和為時(shí),小亮去.(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域?yàn)橹梗?/span>

用樹狀圖或列表法求小明去的概率;

這個(gè)游戲規(guī)則對(duì)小明、小亮雙方公平嗎?請(qǐng)判斷并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,是弦,,

求證:的切線;

,求的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?

(3)過(guò)點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案