【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)F在邊AC上,并且CF=1,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是

【答案】
【解析】解:如圖,延長FP交AB于M,
當(dāng)FP⊥AB時(shí),點(diǎn)P到AB的距離最小,
∵∠C=90°,AC=3,BC=4,
∴AB= =5,
∵∠A=∠A,∠AMF=∠C=90°,
∴△AFM∽△ABC,
= ,即 = ,
解得,F(xiàn)M= ,
由折疊的性質(zhì)可知,F(xiàn)P=FC=1,
∴PM= ,
所以答案是:
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和翻折變換(折疊問題),需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是(
A.10π
B.15π
C.20π
D.30π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是安裝在斜屋面上的熱水器,圖2是安裝該熱水器的側(cè)面示意圖.已知,斜屋面的傾斜角為25°,長為2.1米的真空管AB與水平線AD的夾角為40°,安裝熱水器的鐵架水平橫管BC長0.2米,求
(1)真空管上端B到AD的距離(結(jié)果精確到0.01米);
(2)鐵架垂直管CE的長(結(jié)果精確到0.01米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P(3a,a)是反比例函數(shù)y= (k>0)與⊙O的一個(gè)交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( )

A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張師傅駕車運(yùn)送荔枝到某地出售,汽車出發(fā)前油箱有油50升,行駛?cè)舾尚r(shí)后,圖中在加油站加油若干升,油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系如圖所示.
(1)汽車行駛小時(shí)后加油,中途加油升;
(2)求加油前油箱剩余油量y與行駛時(shí)間t的函數(shù)關(guān)系式;
(3)已知加油前、后汽車都以70千米/小時(shí)勻速行駛,如果加油站距目的地210千米,要到達(dá)目的地,問油箱中的油是否夠用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某倉儲(chǔ)中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上.

(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時(shí),求點(diǎn)D離地面的高.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,點(diǎn)P在矩形ABCD內(nèi).若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為5cm2 , 則四邊形PFCG的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)A,C分別在y軸,x軸上,∠ACB=90°,OA= ,拋物線y=ax2﹣ax﹣a經(jīng)過點(diǎn)B(2, ),與y軸交于點(diǎn)D.

(1)求拋物線的表達(dá)式;
(2)點(diǎn)B關(guān)于直線AC的對稱點(diǎn)是否在拋物線上?請說明理由;
(3)延長BA交拋物線于點(diǎn)E,連接ED,試說明ED∥AC的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,則P,Q的大小關(guān)系是

查看答案和解析>>

同步練習(xí)冊答案