【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8cm,AB=12cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度均為1cm/s.以AQ、PQ為邊作AQPD,連接DQ,交AB于點(diǎn)E.設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤6).解答下列問題:
(1)當(dāng)t為何值時(shí),AQPD為矩形.
(2)當(dāng)t為何值時(shí),AQPD為菱形.
(3)是否存在某一時(shí)刻t,使四邊形AQPD的面積等于四邊形PQCB的面積,若存在,請(qǐng)求出t值,若不存在,請(qǐng)說明理由.
【答案】(1) 當(dāng)t=時(shí),AQPD是矩形;(2) 當(dāng)t=時(shí),□AQPD是菱形;(3)
【解析】
(1)利用矩形的性質(zhì)得到△APQ∽△ABC,利用相似三角形對(duì)應(yīng)邊的比相等列出比例式即可求得t值;
(2)利用菱形的對(duì)角線相互垂直平分解答;
(3)過點(diǎn)P作PM⊥AC于M.先表示出△APQ的面積和S四邊形PQCB=S△ABC﹣S△APQ,進(jìn)而建立方程即可得出結(jié)論.
解:(1)如圖2,當(dāng)AQPD是矩形時(shí),PQ⊥AC,
∴PQ∥BC,
∴△APQ∽△ABC
∴=,
由運(yùn)動(dòng)知,QA=t,BP=t,
∴AP=AB﹣BP=12﹣t,
即,=,
解之 t=,
∴當(dāng)t=時(shí),AQPD是矩形;
(2)當(dāng)AQPD是菱形時(shí),DQ⊥AP,AE=AP
則 cos∠BAC==,
由運(yùn)動(dòng)知,QA=t,BP=t,
∴AP=AB﹣BP=12﹣t,AE=6﹣t,
∴
解之 t=,
所以當(dāng)t=時(shí),□AQPD是菱形;
(3)存在時(shí)間t,使四邊形AQPD的面積等于四邊形PQCB的面積.
在Rt△ABC中,根據(jù)勾股定理得,BC=4,
如圖3,過點(diǎn)P作PM⊥AC于M.
則=,
即=,
故PM=(12﹣t).
∴S△APQ=AQ×PM=×t×(12﹣t),
∴S四邊形PQCB=S△ABC﹣S△APQ=×4×8﹣×t×(12﹣t),
∵四邊形AQPD的面積等于四邊形PQCB的面積,
∴2××t×(12﹣t)=×4×8﹣×t×(12﹣t),
∴t= (舍)或t=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5交y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D.
(1)求此拋物線的表達(dá)式;
(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)在直線AD上,求△EAD的面積;
(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量校園內(nèi)一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)應(yīng)用實(shí)踐小組做了如下的探索:根據(jù)光的反射定律,利用一面鏡子和皮尺,設(shè)計(jì)如圖所示的測量方案:把鏡子放在離樹AB的樹根7.2m的點(diǎn)E處,然后觀測者沿著直線BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹梢頂點(diǎn)A,再用皮尺量得DE=2.4m,觀測者目高CD=1.6m,則樹高AB約是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線,為圖形內(nèi)一點(diǎn),連接,.
(1)如圖①,寫出,,之間的等量關(guān)系,并證明你的結(jié)論;
(2)如圖②,請(qǐng)直接寫出,,之間的關(guān)系式;
(3)你還能就本題作出什么新的猜想?請(qǐng)畫圖并寫出你的結(jié)論(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線、交于點(diǎn),順次聯(lián)結(jié)ABCD各邊中點(diǎn)得到的一個(gè)新的四邊形,如果添加下列四個(gè)條件中的一個(gè)條件:①⊥;②;③;④,可以使這個(gè)新的四邊形成為矩形,那么這樣的條件個(gè)數(shù)是()
A. 1個(gè);B. 2個(gè);
C. 3個(gè);D. 4個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,小明利用同弧所對(duì)的圓周角及圓心角的性質(zhì)探索了一些問題,下面請(qǐng)你和小明一起進(jìn)入探索之旅.
(1)如圖1,△ABC中,∠A=30°,BC=2,則△ABC的外接圓的半徑為 ;
(2)如圖2,在矩形ABCD中,請(qǐng)利用以上操作所獲得的經(jīng)驗(yàn),在矩形ABCD內(nèi)部用直尺與圓規(guī)作出一點(diǎn)P,點(diǎn)P滿足;∠BPC=∠BEC,且PB=PC;(要求:用直尺與圓規(guī)作出點(diǎn)P,保留作圖痕跡.)
(3)如圖3,在平面直角坐標(biāo)系的第一象限內(nèi)有一點(diǎn)B,坐標(biāo)為(2,m),過點(diǎn)B作AB⊥y軸,BC⊥x軸,垂足分別為A、C,若點(diǎn)P在線段AB上滑動(dòng)(點(diǎn)P可以與點(diǎn)A、B重合),發(fā)現(xiàn)使得∠OPC=45°的位置有兩個(gè),則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果
下面有三個(gè)推斷:
①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;
③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率一定是0.45.
其中合理的是
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點(diǎn)A處.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長是( )
A. 2海里 B. 2sin 55°海里
C. 2cos 55°海里 D. 2tan 55°海里
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com