【題目】已知:如圖,C是線段AB上一點,分別以AC.BC為邊作等邊△DAC和等邊△ECB,AE與BD.CD相交于點F、G,CE與BD相交于點H.
(1)求證:△ACE≌△DCB;
(2)求∠AFB的度數(shù).
【答案】(1)見解析;(2)∠AFB=120°.
【解析】
(1)因為△DAC和△ECB均為等邊三角形,則有AC=DC,CE=CB,∠ACD=∠ECB=60°,然后求出∠ACE=∠DCB,利用SAS即可證得△ACE≌△DCB;
(2)由全等三角形的性質(zhì)和三角形內(nèi)角和定理可得出結(jié)果.
解:(1)∵△DAC是等邊三角形,
∴AC=DC,∠ACD=60°,
∵△BCE是等邊三角形,
∴CE=CB,∠ECB=60°,
∴∠ACD=∠ECB=60°,
∴∠ACD+∠DCE=∠ECB+∠DCE,即∠ACE=∠DCB,
在△ACE和△BCD中,,
∴△ACE≌△DCB(SAS);
(2)∵△ACE≌△DCB,
∴∠AEC=∠DBC,
又∵∠EHF=∠BHC,
∴∠EFH=∠BCH=60°,
∴∠AFB=180°60°=120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面,竹桿頂端離地面,小明到竹桿的距離,竹桿到塔底的距離,求這座古塔的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作與探究:如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD的E點上,折痕的一端G點在邊BC上,BG=10.
①第一次折疊:當(dāng)折痕的另一端點F在AB邊上時,如圖1,求折痕GF的長;
②第二次折疊:當(dāng)折痕的另一端點F在AD邊上時,如圖2,證明四邊形BGEF為菱形,并求出折痕GF的長.
(2)拓展延伸:通過操作探究發(fā)現(xiàn)在矩形紙片ABCD中,AB=5,AD=13.如圖3所示,折疊紙片,使點A落在BC邊上的A′處,折痕為PQ.當(dāng)點A′在BC邊上移動時,折痕的端點P,Q也隨之移動.若限定點P,Q分別在AB,AD邊上移動,則點A′在BC邊上可移動的最大距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于拋物線.
對于拋物線.
它與軸交點的坐標(biāo)為________,與軸交點的坐標(biāo)為________,頂點坐標(biāo)為________.
在所給的平面直角坐標(biāo)系中畫出此時拋物線;
結(jié)合圖象回答問題:當(dāng)時,的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是( )
A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長=六邊形GHIJKL的周長 D. S六邊形ABCDEF=2S六邊形GHIJKL
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,光明中學(xué)一教學(xué)樓頂上豎有一塊高為AB的宣傳牌,點E和點D分別是教學(xué)樓底部和外墻上的一點(A,B,D,E在同一直線上),小紅同學(xué)在距E點9米的C處測得宣傳牌底部點B的仰角為67°,同時測得教學(xué)樓外墻外點D的仰角為30°,從點C沿坡度為1∶的斜坡向上走到點F時,DF正好與水平線CE平行.
(1)求點F到直線CE的距離(結(jié)果保留根號);
(2)若在點F處測得宣傳牌頂部A的仰角為45°,求出宣傳牌AB的高度(結(jié)果精確到0.01).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中折線反映了每戶每月用電電費y(元)與用電量x(度)間的函數(shù)關(guān)系式.
(1)根據(jù)圖象,階梯電價方案分為三個檔次,填寫下表:
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量x(度) | 0<x≤140 |
(2)小明家某月用電120度,需交電費 元
(3)求第二檔每月電費y(元)與用電量x(度)之間的函數(shù)關(guān)系式;
(4)在每月用電量超過230度時,每多用1度電要比第二檔多付電費m元,小剛家某月用電290度,交電費153元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com