【題目】如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點(diǎn)O為圓心的圓分別與AC,BC相切于點(diǎn)E,F(xiàn),與AB分別交于點(diǎn)G,H,且EH的延長(zhǎng)線和CB的延長(zhǎng)線交于點(diǎn)D,則CD的長(zhǎng)為 .
【答案】
a
【解析】解:如圖,連接OE、OF,
∵由切線的性質(zhì)可得OE=OF=⊙O的半徑,∠OEC=∠OFC=∠C=90°,
∴OECF是正方形,
∵由△ABC的面積可知 ×AC×BC= ×AC×OE+ ×BC×OF,
∴OE=OF= a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,
∵由切割線定理可得BF2=BHBG,
∴ a2=BH(BH+a),
∴BH= a或BH= a(舍去),
∵OE∥DB,OE=OH,
∴△OEH∽△BDH,
∴ = ,
∴BH=BD,CD=BC+BD=a+ a= a.
故答案為: a.
連接OE、OF,由切線的性質(zhì)結(jié)合結(jié)合直角三角形可得到正方形OECF,并且可求出⊙O的半徑為0.5a,則BF=a﹣0.5a=0.5a,再由切割線定理可得BF2=BHBG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性質(zhì)即可求出BH=BD,最終由CD=BC+BD,即可求出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次實(shí)驗(yàn)中,小強(qiáng)把一根彈簧的上端固定,在其下端懸掛物體.下面是他測(cè)得的彈簧的長(zhǎng)度y與所掛物體的質(zhì)量石的一組對(duì)應(yīng)值:
所掛物體的質(zhì)量x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
彈簧的長(zhǎng)度y/cm | 20 | 22 | 24 | 26 | 25 | 30 |
(1)上表反映了哪兩個(gè)變量之間的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)填空:
①當(dāng)所掛的物體為3kg時(shí),彈簧長(zhǎng)是____.不掛重物時(shí),彈簧長(zhǎng)是____.
②當(dāng)所掛物體的質(zhì)量為8kg(在彈簧的彈性限度范圍內(nèi))時(shí),彈簧長(zhǎng)度是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC邊上的動(dòng)點(diǎn)(不與B,C重合),點(diǎn)P關(guān)于直線AB,AC的對(duì)稱(chēng)點(diǎn)分別為M,N,則線段MN長(zhǎng)的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在一條筆直的公路上有M、P、N三個(gè)地點(diǎn),M、P兩地相距20km,甲開(kāi)汽車(chē),乙騎自行車(chē)分別從M、P兩地同時(shí)出發(fā),勻速前往N地,到達(dá)N地后停止運(yùn)動(dòng).已知乙騎自行車(chē)的速度為20km/h,甲,乙兩人之間的距離y(km)與乙行駛的時(shí)間t(h)之間的關(guān)系如圖②所示.
(1)M、N兩地之間的距離為km;
(2)求線段BC所表示的y與t之間的函數(shù)表達(dá)式;
(3)若乙到達(dá)N地后,甲,乙立即以各自原速度返回M地,請(qǐng)?jiān)趫D②所給的直角坐標(biāo)系中補(bǔ)全函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,以大于BF的相同長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,得四邊形ABEF.
求證:四邊形ABEF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解“數(shù)學(xué)思想作為對(duì)學(xué)習(xí)數(shù)學(xué)幫助有多大?”一研究員隨機(jī)抽取了一定數(shù)量的高校大一學(xué)生進(jìn)行了問(wèn)卷調(diào)查,并將調(diào)查得到的數(shù)據(jù)用下面的扇形圖和下表來(lái)表示(圖、表都沒(méi)制作完成).
選項(xiàng) | 幫助很大 | 幫助較大 | 幫助不大 | 幾乎沒(méi)有幫助 |
人數(shù) | a | 543 | 269 | b |
根據(jù)圖、表提供的信息.
(1)請(qǐng)問(wèn):這次共有多少名學(xué)生參與了問(wèn)卷調(diào)查?
(2)算出表中a、b的值. (注:計(jì)算中涉及到的“人數(shù)”均精確到1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=120°,OC⊥OB,按下列要求利用量角器過(guò)點(diǎn)O作出射線OD、OE;
(1)在圖①中作出射線OD滿足∠COD=50°,并直接寫(xiě)出∠AOD的度數(shù)是 ;
(2)在圖②中作出射線OD、OE,使得OD平分∠AOC,OE平分∠BOD,并求∠COE的度數(shù);
(3)如圖③,若射線OD從OA出發(fā)以每秒10°的速度繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),同時(shí)射線OE從OC出發(fā)以每秒5°的速度繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t秒,在旋轉(zhuǎn)過(guò)程中,當(dāng)OB第一次恰好平分∠DOE時(shí),求出t的值,并作出此時(shí)OD、OE的大概位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華詩(shī)詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團(tuán)委組織了一次全校2000名學(xué)生參加的“中國(guó)詩(shī)詞大會(huì)”海選比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分,為了更好地了解本次海選比賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的海選比賽成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列統(tǒng)計(jì)圖表:
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)請(qǐng)把圖1中的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在圖2的扇形統(tǒng)計(jì)圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角θ的度數(shù)為 度;
(3)規(guī)定海選成績(jī)?cè)?/span>90分以上(包括90分)記為“優(yōu)等”,請(qǐng)估計(jì)該校參加這次海選比賽的2000名學(xué)生中成績(jī)“優(yōu)等”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(慶陽(yáng)中考)現(xiàn)在的青少年由于沉迷電視、手機(jī)、網(wǎng)絡(luò)游戲等,視力日漸減退,某市為了了解學(xué)生的視力變化情況,從全市九年級(jí)隨機(jī)抽取了1 500名學(xué)生,統(tǒng)計(jì)了每個(gè)人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計(jì)圖,并對(duì)視力下降的主要因素進(jìn)行調(diào)查,制成扇形統(tǒng)計(jì)圖.
解答下列問(wèn)題:
(1)圖中D所在扇形的圓心角度數(shù)為______;
(2)若2016年全市共有30 000名九年級(jí)學(xué)生,請(qǐng)你估計(jì)視力在4.9以下的學(xué)生約有多少名?
(3)根據(jù)扇形統(tǒng)計(jì)圖信息,你覺(jué)得中學(xué)生應(yīng)該如何保護(hù)視力?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com