【題目】 如圖,⊙M的半徑為2,圓心M的坐標(biāo)為(3,4),點(diǎn)P是⊙M上的任意一點(diǎn),PA⊥PB,且PA、PB與x軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,則AB的最小值為( )
A. 3B. 4C. 6D. 8
【答案】C
【解析】
根據(jù)直角三角形斜邊上中線的性質(zhì),若要使AB取得最小值,則PO需取得最小值,連接OM,交⊙M于點(diǎn)P′,當(dāng)點(diǎn)P位于P′位置時(shí),OP′取得最小值,過點(diǎn)M作MQ⊥x軸于點(diǎn)Q,根據(jù)勾股定理求出OM.
∵PA⊥PB,
∴∠APB=90°,
∵AO=BO,
∴AB=2PO,
若要使AB取得最小值,則PO需取得最小值,
連接OM,交⊙M于點(diǎn)P′,當(dāng)點(diǎn)P位于P′位置時(shí),OP′取得最小值,
過點(diǎn)M作MQ⊥x軸于點(diǎn)Q
,
則OQ=3、MQ=4,
∴OM=5,
又∵MP′=2,
∴OP′=3,
∴AB=2OP′=6,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,給出下列條件:
①;②;③;④;⑤
其中單獨(dú)能夠判定的個(gè)數(shù)為( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有點(diǎn)A(-4,0)、B(0,3)、P(a,-a)三點(diǎn),線段CD與AB關(guān)于點(diǎn)P中心對(duì)稱,其中A、B的對(duì)應(yīng)點(diǎn)分別為C、D
(1) 當(dāng)a=-4時(shí)
① 在圖中畫出線段CD,保留作圖痕跡
② 線段CD向下平移 個(gè)單位時(shí),四邊形ABCD為菱形
(2) 當(dāng)a=___________時(shí),四邊形ABCD為正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O是△ABC的外接圓,AB是直徑,D是⊙O外一點(diǎn)且滿足∠DCA=∠B,連接AD.
(1)求證:CD是⊙O的切線;
(2)若AD⊥CD,CD=2,AD=4,求直徑AB的長(zhǎng);
(3)如圖2,當(dāng)∠DAB=45°時(shí),AD與⊙O交于E點(diǎn),試寫出AC、EC、BC之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)畢業(yè)生響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,投資開辦了一個(gè)裝怖品商店,該店采購(gòu)了一種今年新上市的裝飾品進(jìn)行了30天的試銷售,購(gòu)進(jìn)價(jià)格為20元/件.銷售結(jié)束后,得知日銷售量P(件),銷售價(jià)格Q(元/件)與銷售時(shí)間x(天) (1≤x≤30,且x為正整數(shù))都滿足一次函數(shù)關(guān)系,其函數(shù)圖象如圖所示:
(1)請(qǐng)直接寫出:銷售量(P件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式,銷售價(jià)格Q(元/件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式;
(2)請(qǐng)問在30天的試銷售中,哪﹣天的日銷售利潤(rùn)最大?求最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)分別是A(﹣3,2)B(0,4)C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;
(2)分別連接AB1,BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)A(1,0)和點(diǎn)C(0,3),對(duì)稱軸為直線x=1.
(1)求該二次函數(shù)的關(guān)系式和頂點(diǎn)坐標(biāo);
(2)結(jié)合圖象,解答下列問題:
①當(dāng)1<x<2時(shí),求函數(shù)y的取值范圍。
②當(dāng)y<3時(shí),求x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一元二次方程.
(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程有一根小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在拋物線y=3x2-2x+2上運(yùn)動(dòng).過點(diǎn)A作AC⊥x軸于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,連結(jié)BD,則對(duì)角線BD的最小值為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com