【題目】如圖,矩形ABCD的邊BC和AB的長分別為4和5,把它的左上角如圖所示折疊.點A恰好落在CD邊上的點F處,折痕為BE,則DE的長為( )
A.B.C.D.
科目:初中數學 來源: 題型:
【題目】如圖是學習分式方程應用時,老師板書的問題和兩名同學所列的方程.
根據以上信息,解答下列問題.
(1)冰冰同學所列方程中的x表示什么,慶慶同學所列方程中的y表示什么;
(2)兩個方程中任選一個,并寫出它的等量關系;
(3)解(2)中你所選擇的方程,并回答老師提出的問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表顯示的是某種大豆在相同條件下的發(fā)芽試驗結果:
每批粒數n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
發(fā)芽的粒數m | 96 | 282 | 382 | 570 | 948 | 1904 | 2850 |
發(fā)芽的頻率 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.952 | 0.950 |
下面有三個推斷:
①當n為400時,發(fā)芽的大豆粒數為382,發(fā)芽的頻率為0.955,所以大豆發(fā)芽的概率是0.955;
②隨著試驗時大豆的粒數的增加,大豆發(fā)芽的頻率總在0.95附近擺動,顯示出一定的穩(wěn)定性,可以估計大豆發(fā)芽的概率是0.95;
③若大豆粒數n為4000,估計大豆發(fā)芽的粒數大約為3800粒.
其中推斷合理的是( 。
A. ①②③ B. ①② C. ①③ D. ②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:點A、C分別是∠B的兩條邊上的點,點D、E分別是直線BA、BC上的點,直線AE、CD相交于點P.
(1)點D、E分別在線段BA、BC上;
①若∠B=60°(如圖1),且AD=BE,BD=CE,則∠APD的度數為 ;
②若∠B=90°(如圖2),且AD=BC,BD=CE,求∠APD的度數;
(2)如圖3,點D、E分別在線段AB、BC的延長線上,若∠B=90°,AD=BC,∠APD=45°,求證:BD=CE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,C、D是⊙O上的點,且OC∥BD, AD分別與BC,OC相交于點E,F,則下列結論:①AD⊥BD; ②∠AOC=∠AEC; ③CB平分∠ABD;④AF=DF; ⑤BD=2OF; ⑥△CEF ≌△BED,其中一定成立的是( )
A. ① ③ ⑤ ⑥ B. ① ③ ④ ⑤
C. ② ④ ⑤ ⑥ D. ② ③ ④ ⑥
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC與∠ACB的平分線相較于點E,過點E作EF∥BC交AC于點F,則EF的長為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com