【題目】如圖,E,F(xiàn)分別是矩形ABCD的邊AD,AB上的點(diǎn),若EF=EC,且EF⊥EC.
(1)求證:△AEF≌△DCE;
(2)若CD=1,求BE的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)
【解析】試題分析:(1)根據(jù)矩形的性質(zhì)和已知條件可證明△AEF≌△DCE;
(2)由(1)可知AE=DC,在Rt△ABE中由勾股定理可求得BE的長(zhǎng)
試題解析:(1)證明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥EC,
∴∠FEC=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
在△AEF和△DCE中,
,
∴△AEF≌△DCE(AAS)
(2)解:由(1)知△AEF≌△DCE,
∴ AE=DC=1,
在矩形ABCD中,AB=CD=1,
在R△ABE中,AB2+AE2=BE2,即12+12=BE2,∴BE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點(diǎn)A(1,a),點(diǎn)B是此反比例函數(shù)圖象上任意一點(diǎn)(不與點(diǎn)A重合),BC⊥x軸于點(diǎn)C.
(1)求k的值;
(2)求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個(gè)垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.
(1)證明:ABCD=PBPD.
(2)如圖乙,也是一個(gè)“三垂圖”,上述結(jié)論成立嗎?請(qǐng)說(shuō)明理由.
(3)已知拋物線與x軸交于點(diǎn)A(-1,0),B(3,0),與y軸交于點(diǎn)(0,-3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),完成下列各題:
(1)將函數(shù)關(guān)系式用配方法化為 y=a(x+h)2+k形式,并寫(xiě)出它的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸.
(2)若它的圖象與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線EF分別平行四邊形ABCD邊AB、 CD于點(diǎn)E、F,將圖形沿直線EF對(duì)折,點(diǎn)A、D分別落在點(diǎn)、A',D'處,
(1) 如圖1,當(dāng)點(diǎn)A’與點(diǎn)C重合時(shí),連接AF,求證:四邊形AECF是菱形:
(2)若∠A=60°,AD=4, AB=8,
①如圖2.當(dāng)點(diǎn)A’與BC邊的中點(diǎn)G重合時(shí),求AE的長(zhǎng);
②如圖3.當(dāng)點(diǎn)A’落在BC邊上任意點(diǎn)時(shí),設(shè)點(diǎn)P為直線EF上的動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出PC+PA’的最小值 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC(如圖).
(1)利用尺規(guī)按下列要求作圖(保留作圖痕跡,不寫(xiě)作法):
①作∠BAC的平分線AD,交BC于點(diǎn)D;
②作AB邊的垂直平分線EF,分別交AD,AB于點(diǎn)E,F.
(2)連接BE,若∠ABC=60°,∠C=40°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=60°.在△ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱(chēng)點(diǎn)為D,連接AD,BD.
(1)依據(jù)題意補(bǔ)全圖形;
(2)當(dāng)∠PAC等于多少度時(shí),AD∥BC?請(qǐng)說(shuō)明理由;
(3)若BD交直線AP于點(diǎn)E,連接CE,求∠CED的度數(shù);
(4)探索:線段CE,AE和BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)為了解課堂發(fā)言情況,隨機(jī)抽取了該年級(jí)部分學(xué)生,對(duì)他們某天在課堂上發(fā)言次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知、兩組發(fā)言人數(shù)的比為,請(qǐng)結(jié)合圖表中相關(guān)信息,回答下列問(wèn)題:
組別 | 發(fā)言次數(shù) |
(1)求出樣本容量,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求組所在扇形的圓心角的度數(shù);
(3)該年級(jí)共有學(xué)生800人,請(qǐng)你估計(jì)該年級(jí)在這天里發(fā)言次數(shù)不少于12的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,對(duì)角線BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC為_________度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com