【題目】如圖1,已知拋物線x軸相交于A、B兩點(AB右),與y軸交于點C.其頂點為D

1)求點D的坐標(biāo)和直線BC對應(yīng)的一次函數(shù)關(guān)系式;

2)若正方形PQMN的一邊PQ在線段AB上,另兩個頂點M、N分別在BC、AC上,試求MN兩點的坐標(biāo);

3)如圖1E是線段BC上的動點,過點EDE的垂線交BD于點F,求DF的最小值.

(圖1 (圖2

【答案】1,;(2,;(3

【解析】

1)將二次函數(shù)的解析式化為頂點式即可得點D的坐標(biāo);先根據(jù)二次函數(shù)的解析式可求出B、C的坐標(biāo),再利用待定系數(shù)法可求出直線BC的一次函數(shù)關(guān)系式;

2)先利用待定系數(shù)法求出直線AC的解析式,從而可設(shè)點M、N的坐標(biāo),再根據(jù)正方形的性質(zhì)(四邊相等)列出等式求解即可;

3)先利用待定系數(shù)法求出直線BD的解析式,再設(shè)點EF的坐標(biāo),利用待定系數(shù)法分別求出直線DEEF的一次項系數(shù),然后利用列出等式并化簡,得出DF的表達(dá)式,由此求解即可得.

1

則頂點D的坐標(biāo)為

當(dāng)時,,解得

則點A的坐標(biāo)為,點B的坐標(biāo)為

當(dāng)時,,則點C的坐標(biāo)為

設(shè)直線BC對應(yīng)的一次函數(shù)關(guān)系式為

將點,代入得:,解得

則直線BC對應(yīng)的一次函數(shù)關(guān)系式為;

2)設(shè)直線AC的解析式為

將點代入得:,解得

則直線AC的解析式為

設(shè)點M的坐標(biāo)為,點N的坐標(biāo)為

四邊形PQMN是正方形,PQ在線段AB

則有,解得

則點M的坐標(biāo)為,點N的坐標(biāo)為;

3)設(shè)直線BD的解析式為

將點,代入得:,解得

則直線BD的解析式為

設(shè)點E的坐標(biāo)為,點F的坐標(biāo)為,則,

由題意,分以下兩種情況:

①當(dāng)時,則,此時點E恰好在拋物線的對稱軸上

F的縱坐標(biāo)為2,即,解得

②當(dāng)

設(shè)直線DE的解析式為

將點代入得:,解得

設(shè)直線EF的解析式為

將點,代入得:,解得

,即

整理得:

對于任意兩個正數(shù)都有

,即,當(dāng)且僅當(dāng)時,等號成立

設(shè)

,當(dāng)且僅當(dāng),即時,等號成立

因此,此時DF的最小值為

綜上,DF的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)計劃對1200m2的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個施工隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且甲、乙兩隊在分別獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用3天.

甲、乙兩施工隊每天分別能完成綠化的面積是多少?

設(shè)先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務(wù),求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著時代的不斷發(fā)展,新穎的網(wǎng)絡(luò)購進(jìn)逐漸融入到人們的生活中,“拼一拼”電商平臺上提供了一種拼團(tuán)購買方式,當(dāng)拼團(tuán)(單數(shù)不超過15單)成功后商家將會讓利一定的額度給予顧客實惠.現(xiàn)在某商家準(zhǔn)備出手一種每件成本25/件的新產(chǎn)品,經(jīng)市場調(diào)研發(fā)現(xiàn),單價y(單位:元)、日銷售量m(單位:件)與拼單數(shù)x(單位:單)之間存在著如表的數(shù)量關(guān)系:

拼單數(shù)x(單位:單)

2

4

8

12

單價y(單位:元)

34.50

34.00

33.00

32.00

日銷售量m(單位:件)

68

76

92

108

請根據(jù)以上提供的信息解決下列問題:

1)請直接寫出單價y和日銷售量m分別與拼單數(shù)x之間的一次函數(shù)關(guān)系式;

2)拼單數(shù)設(shè)置為多少單時的日銷售利潤最大,最大的銷售利潤是多少?

3)在實際銷售過程中,廠家希望能有更多的商品出售,因此對電商每銷售一件商品廠家就給予電商補(bǔ)助a元(a≤2),那么電商在獲得補(bǔ)助之日后日銷售利潤能夠隨單數(shù)x的增大而增大,那么a的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河旁有一座小山,從山頂A處測得河對岸點C的俯角為30°,測得岸邊點D的俯角為45°,現(xiàn)從山頂A到河對岸點C拉一條筆直的纜繩AC,如果AC120米,求河寬CD的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊙O的直徑,BC⊙O的弦,點P⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C

1)求證:PB⊙O的切線;

2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD交于點O,ABDC,ABBC,BD平分∠ABC,過點CCEABAB的延長線于點E,連接OE

1)求證:四邊形ABCD是菱形;

2)若AB2,BD4,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正五邊形的外接圓中,任一邊所對的圓周角的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運算:.若方程有兩個相等正實數(shù)根,且(其中),則的相反數(shù)為( ).

A.B.4C.D.2

查看答案和解析>>

同步練習(xí)冊答案