【題目】為鼓勵下崗工人再就業(yè),某地市政府規(guī)定,企業(yè)按成本價提供產(chǎn)品給下崗人員自主銷售,成本價與出廠價之間的差價由政府承擔(dān).老李按照政策投資銷售本市生產(chǎn)的一種兒童面條.已知這種兒童面條的成本價為每袋12元,出廠價為每袋16元,每天銷售量(袋)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)老李在開始創(chuàng)業(yè)的第1天將銷售單價定為17元,那么政府這一天為他承擔(dān)的總差價為多少元?
(2)設(shè)老李獲得的利潤為(元),當銷售單價為多少元時,每天可獲得最大利潤?
(3)物價部門規(guī)定,這種面條的銷售單價不得高于24元,如果老李想要每天獲得的利潤不低于216元,那么政府每天為他承擔(dān)的總差價最少為多少元?
【答案】(1)政府這個月為承擔(dān)的總差價為156元;(2)當銷售單價定為21元時,每月可獲得最大利潤243元;(3)銷售單價定為24元時,政府每個月為他承擔(dān)的總差價最少為72元.
【解析】
(1)把x=17代入y=3x+90求出銷售的件數(shù),然后求出政府承擔(dān)的成本價與出廠價之間的差價;
(2)由總利潤=銷售量每件純賺利潤,得,把函數(shù)轉(zhuǎn)化成頂點坐標式,根據(jù)二次函數(shù)的性質(zhì)求出銷售單價及最大利潤;
(3)令,求出x的值,求出利潤的范圍,然后根據(jù)一次函數(shù)的性質(zhì)求出總差價的最小值.
解:(1)當時,,
,即政府這個月為承擔(dān)的總差價為156元;
(2)依題意得,,
∵,∴當時,有最大值243,
即當銷售單價定為21元時,每月可獲得最大利潤243元;
(3)由題意得:,解得:,
∵,拋物線開口向下,
∴當時,,
設(shè)政府每個月為他承擔(dān)的總差價為元,
∴,
∵,
∴隨的增大而減小,
∴當時,最小,
即銷售單價定為24元時,政府每個月為他承擔(dān)的總差價最少為72元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知二次函數(shù)圖象的頂點為A,與y軸交于點B,異于頂點A的點C(1,n)在該函數(shù)圖象上.
(1)當m=5時,求n的值.
(2)當n=2時,若點A在第一象限內(nèi),結(jié)合圖象,求當y時,自變量x的取值范圍.
(3)作直線AC與y軸相交于點D.當點B在x軸上方,且在線段OD上時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把△ABC放置在平面直角坐標系中,點A的坐標為(0,8),點B的坐標為(-6,0),點C的坐標為(8,0),M,N分別是線段AB,AC上的點,將△AMN沿直線MN翻折后,點A落在x軸上的A′處.
Ⅰ當MN∥x軸時,判斷△A'CN的形狀.
Ⅱ如圖,當A'M⊥AB時.
①求A'的坐標;②求MN的長.
Ⅲ當△A'MB是等腰三角形時,直接寫出A'的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,如圖1,AB是⊙O的弦,點F是的中點,過點F作EF⊥AB于點E,易得點E是AB的中點,即AE=EB.⊙O上一點C(AC>BC),則折線ACB稱為⊙O的一條“折弦”.
(1)當點C在弦AB的上方時(如圖2),過點F作EF⊥AC于點E,求證:點E是“折弦ACB”的中點,即AE=EC+CB.
(2)當點C在弦AB的下方時(如圖3),其他條件不變,則上述結(jié)論是否仍然成立?若成立說明理由;若不成立,那么AE、EC、CB滿足怎樣的數(shù)量關(guān)系?直接寫出,不必證明.
(3)如圖4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圓⊙O的半徑為2,過⊙O上一點P作PH⊥AC于點H,交AB于點M,當∠PAB=45°時,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線交坐標軸于兩點,拋物線經(jīng)過兩點,且交軸于另一點.點為第一象限內(nèi)拋物線上一動點,過點作交于點,交軸于點.
(1)求拋物線的解析式;
(2)設(shè)點的橫坐標為在點移動的過程中,存在求出此時的值;
(3)在拋物線上取點在坐標系內(nèi)取點問是否存在以為頂點且以為邊的矩形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.
已知:直線l及直線l外一點P.
求作:直線,使得.
作法:如圖,
①任意取一點K,使點K和點P在直線l的兩旁;
②以P為圓心,長為半徑畫弧,交l于點,連接;
③分別以點為圓心,以長為半徑畫弧,兩弧相交于點Q(點Q和點A在直線的兩旁);
④作直線.
所以直線就是所求作的直線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連接,
______,______,
四邊形是平行四邊形(__________)(填推理依據(jù)).
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年全國兩會于3月5日在人民大會堂開幕,某社區(qū)為了解居民對此次兩會的關(guān)注程度,在全社區(qū)范圍內(nèi)隨機抽取部分居民進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把居民對兩會的關(guān)注程度分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下不完整的統(tǒng)計圖:
請結(jié)合圖表中的信息,解答下列問題:
(1)此次調(diào)查一共隨機抽取了_____名居民;
(2)請將條形統(tǒng)計圖補充完整;
(3)扇形統(tǒng)計圖中,“很強”所對應(yīng)扇形圓心角的度數(shù)為_____;
(4)若該社區(qū)有1500人,則可以估計該社區(qū)居民對兩會的關(guān)注程度為“淡薄”層次的約有 _____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.如圖2,則拋物線y=x的“完美三角形”斜邊AB的長________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校了解九年級學(xué)生近兩個月“推薦書目”的閱讀情況,隨機抽取了該年級的部分學(xué)生,調(diào)查了他們每人“推薦書目”的閱讀本數(shù).設(shè)每名學(xué)生的閱讀本數(shù)為n,并按以下規(guī)定分為四檔:當n<3時,為“偏少”;當3≤n<5時,為“一般”;當5≤n<8時,為“良好”;當n≥8時,為“優(yōu)秀”.將調(diào)查結(jié)果統(tǒng)計后繪制成不完整的統(tǒng)計圖表:
閱讀本數(shù)n(本) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
人數(shù)(名) | 1 | 2 | 6 | 7 | 12 | x | 7 | y | 1 |
請根據(jù)以上信息回答下列問題:
(1)分別求出統(tǒng)計表中的x、y的值;
(2)估計該校九年級400名學(xué)生中為“優(yōu)秀”檔次的人數(shù);
(3)從被調(diào)查的“優(yōu)秀”檔次的學(xué)生中隨機抽取2名學(xué)生介紹讀書體會,請用列表或畫樹狀圖的方法求抽取的2名學(xué)生中有1名閱讀本數(shù)為9的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com