【題目】如圖ABC中,C=90°,A=30°,B C=5cm;DEF中D=90°,E=45°,DE=3cm.現(xiàn)將DEF的直角邊DF與ABC的斜邊AB重合在一起,并將DEF沿AB方向移動(dòng)(如圖).在移動(dòng)過(guò)程中,D、F兩點(diǎn)始終在AB邊上(移動(dòng)開始時(shí)點(diǎn)D與點(diǎn)A重合,一直移動(dòng)至點(diǎn)F與點(diǎn)B重合為止).

(1) 當(dāng)DEF移動(dòng)至什么位置,即AD的長(zhǎng)為多少時(shí),E、B的連線與AC平行.

(2) DEF的移動(dòng)過(guò)程中,是否存在某個(gè)位置,使得EBD=22.5°?如果存在,求出AD的長(zhǎng)度;如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1) cm;(2)cm.

【解析】

試題(1)因?yàn)?/span>C=90°A=30°,BC=5cm,所以AB=10cm,又因?yàn)?/span>FDE=90°,DEF=45°,DE=3cm,所以DE=4cm,連接EB,設(shè)BEAC,則可求證EBD=A=30°,故AD的長(zhǎng)度可求;

(2)當(dāng)EBD=22.5°時(shí),利用三角形外角的性質(zhì)求得BEF=22.5°,則EBD=BEF,故BF=EF=,AD=BD-BF-DF=(cm);

試題解析:(1)cm時(shí),BEAC.理由如下:

設(shè)EBAC,則EBD=A=30°

在RtEBD中,cm

cm

cm時(shí),BEAC;

(2) DEF的移動(dòng)過(guò)程中,當(dāng)AD=cm時(shí),使得EBD=22.5°.理由如下:

假設(shè)EBD=22.5°

DEF中,D=90°,DEF=45°,DE=3cm,

EF=cm,DEF=DFE=45°,DE=DF=3cm.

∵∠DFE=FEB+FBE=45°

∴∠EBD=BEF,

BF=EF=,

AD=BD-BF-DF=(cm).

DEF的移動(dòng)過(guò)程中,當(dāng)AD=cm時(shí),使得EBD=22.5°.

考點(diǎn): 幾何變換綜合題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是菏澤銀座地下停車場(chǎng)入口的設(shè)計(jì)圖,請(qǐng)根據(jù)圖中數(shù)據(jù)計(jì)算 CE的長(zhǎng)度.結(jié)果精確到 0.01m,參考數(shù)據(jù):sin22°≈0.3746,cos22°≈0.9272, tan22°≈0.4040)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠B=70°,∠BAC=30°,將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到EDC,當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在AC邊上時(shí),∠CAE的度數(shù)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游樂(lè)場(chǎng)一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點(diǎn)E在線段BD上,在C點(diǎn)測(cè)得點(diǎn)A的仰角為30°,點(diǎn)E的俯角也為30°,測(cè)得B、E間距離為10米,立柱AB30米.求立柱CD的高(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量出大樓AB的高度,從距離樓底B處50米的點(diǎn)C(點(diǎn)C與樓底B在同一水平面上)出發(fā),沿傾斜角為30°的斜坡CD前進(jìn)20米到達(dá)點(diǎn)D,在點(diǎn)D處測(cè)得樓頂A的仰角為64°,求大樓AB的高度(結(jié)果精確到1米)(參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李是某服裝廠的一名工人,負(fù)責(zé)加工A,B兩種型號(hào)服裝,他每月的工作時(shí)間為22天,月收入由底薪和計(jì)件工資兩部分組成,其中底薪900元,加工A型服裝1件可得20元,加工B型服裝1件可得12元.已知小李每天可加工A型服裝4件或B型服裝8件,設(shè)他每月加工A型服裝的時(shí)間為x天,月收入為y元.

(1) 求y與x的函數(shù)關(guān)系式;

(2) 根據(jù)服裝廠要求,小李每月加工A型服裝數(shù)量應(yīng)不少于B型服裝數(shù)量的,那么他的月收入最高能達(dá)到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為1,頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)Cx軸的正半軸上,過(guò)點(diǎn)BBA1AC于點(diǎn)A1,過(guò)點(diǎn)A1A1B1OA,OC于點(diǎn)B1;過(guò)點(diǎn)B1B1A2AC于點(diǎn)A2,過(guò)點(diǎn)A2A2B2OA,OC于點(diǎn)B2;……,按此規(guī)律進(jìn)行下去,點(diǎn)A2020的坐標(biāo)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙O,BC為⊙O直徑,延長(zhǎng)ACD,過(guò)D作⊙O切線,切點(diǎn)為E,且∠D=90°,連接BE.DE=12,

(1)CD=4,求⊙O的半徑;

(2)AD+CD=30,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,是邊上一點(diǎn),以為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在的延長(zhǎng)線上取點(diǎn),使得交于點(diǎn)

(1)判斷直線的位置關(guān)系,并說(shuō)明理由;

(2)OA=4, ∠A=30°,求圖中線段DG、線段EG與弧DE圍成陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案