【題目】如圖,一次函數(shù)y=﹣2x+m的圖象與x軸y軸分別交于點A,B,與正比例函數(shù)y=x的圖象交于點P(2,n)

(1)求點A的坐標;

(2)求△POB的面積.

【答案】(1) A(3.5,0);(2)7.

【解析】

1)把P的坐標代入yx即可求得n的值,然后把(2,3)代入y=﹣2x+m即可求得m的值;

2)先求得B的坐標,然后根據(jù)三角形面積求得即可.

解:(1)把P2,n)代入yx得:n×23,

所以P點坐標為(23),

P23)代入y=﹣2x+m得:﹣4+m3,解得m7

∴一次函數(shù)的解析式為y=﹣2x+7,

y0,則﹣2x+70,解得x3.5,

A3.50);

2)把x0代入y=﹣2x+7y7,

所以B點坐標為(07),

所以△POB的面積=×7×27

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,點DE、F分別在ABBC、AC BECFAD+ECAB

1)求證:DEF是等腰三角形;

2)當∠A40°時,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABE△CDE都是等腰直角三角形,∠AEB∠DEC90°,連接AD,ACBC,BD,若ADACAB,則下列結論:①AE垂直平分CD②AC平分∠BAD,③△ABD是等邊三角形,④∠BCD的度數(shù)為150°,其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.

(1)若∠ABC=70°,則∠NMA的度數(shù)是   度.

(2)若AB=8cm,MBC的周長是14cm.

①求BC的長度;

②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A(﹣4,0),B(0,3),點D是y軸負半軸上的一點.當△ABD是等腰三角形時,點D的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過A(2,0). 設頂點為點P,與x軸的另一交點為點B.

(1)求b的值,求出點P、點B的坐標;

(2)如圖,在直線 上是否存在點D,使四邊形OPBD為平行四邊形?若存在,求出點D的坐

標;若不存在,請說明理由;

(3)在x軸下方的拋物線上是否存在點M,使AMP≌△AMB?如果存在,試舉例驗證你的猜想;如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點在BC上,且四邊形AEFD是平行四邊形.

(1)ADBC有何等量關系?請說明理由;

(2)當AB=DC時,求證:四邊形AEFD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,ADBC邊上的中線,FAD邊上的動點,EAC邊上一點AE2EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標系中的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案