精英家教網 > 初中數學 > 題目詳情

【題目】某市為爭創(chuàng)全國文明衛(wèi)生城,2008年市政府對市區(qū)綠化工程投入的資金是2000萬元,2010年投入的資金是2420萬元,且從2008年到2010年,兩年間每年投入資金的年平均增長率相同.

(1)求該市對市區(qū)綠化工程投入資金的年平均增長率;

(2)若投入資金的年平均增長率不變,那么該市在2012年需投入多少萬元?

【答案】(1)該市對市區(qū)綠化工程投入資金的年平均增長率為10%;(2)2012年需投入資金2928.2萬元.

【解析】分析:(1)因為年平均增長率相同,所以可設年平均增長率為,則;(2)需投入萬元.

解:(1)設該市對市區(qū)綠化工程投入資金的年平均增長率為,

根據題意得,,

解得,(舍去).

答:該市對市區(qū)綠化工程投入資金的年平均增長率為10﹪.

22012年需投入資金:(萬元).

答:2012年需投入資金2 928.2萬元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下圖是昌平區(qū)20191月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )

A.1月份中,最高氣溫為10℃,最低氣溫為-2℃

B.10號至16號的氣溫中,每天溫差最小為7℃

C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃

D.每天的最高氣溫與最低氣溫都是具有相反意義的量

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=24厘米,BC=10厘米,點PA開始沿AB邊以4厘米/秒的速度運動,點QC開始沿CD2厘米/秒的速度移動,如果點P、Q分別從A、C同時出發(fā),當其中一點到達終點時,另一點也隨之停止運動,設運動時間為t秒.

1)當t=2秒時,求P、Q兩點之間的距離;

2t為何值時,線段AQDP互相平分?

3t為何值時,四邊形APQD的面積為矩形面積的?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點DDH⊥AC于點H,連接DE交線段OA于點F.

(1)求證:DH是圓O的切線;

(2)若,求證:A為EH的中點.

(3)若EA=EF=1,求圓O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在一張長方形紙條上畫一條數軸.

1)若折疊紙條使數軸上表示﹣1的點與表示5的點重合,則折痕與數軸的交點表示的數是   ;

2)如果數軸上兩點之間的距離為6+m2m為常數),這兩點經過(1)的折疊方式后折痕與數軸的交點與(1)中的交點相同,求左邊這個點表示的數;(用含m的代數式表示)

3)如圖2,若將此紙條沿A,B處剪開,將中間的一段紙條對折,使其左右兩端重合,這樣連續(xù)對折n次后,再將其展開,求最右端的折痕與數軸的交點表示的數.(用含n的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一條數軸在原點O和點B處各折一下,得到一條“折線數軸”.圖中點A表示﹣6,點B表示8,點C表示16,我們稱點A和點C在數軸上相距22個長度單位.動點P從點A出發(fā),以1單位/秒的速度沿著“折線數軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢復原速:同時,動點Q從點C出發(fā),以2單位/秒的速度沿著數軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢復原速.設運動的時間為t秒.

1)動點P從點A運動至C點需要多少時間?

2P、Q兩點相遇時,求出相遇點M所對應的數是多少;

3)求當t為何值時,P、O兩點在數軸上相距的長度與Q、B兩點在數軸上相距的長度相等.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直角三角形ABC中,∠C=90°,將△ABC繞點A逆時針旋轉至△AED,使點C的對應點D恰好落在邊AB上,E為點B的對應點.設∠BACα,則∠BED______.(用含α的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC中,∠B=90°,AB=16cm,BC=12cm,PQABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長.

2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC2AOC,將一直角三角板的直角頂點放在點O處,邊OM在射線OB上,另一邊ON在直線AB的下方.

1)將圖1中的三角板繞點O按逆時針方向旋轉45°至圖2的位置,此時∠MOC   °;

2)將圖1中的三角板繞點O按逆時針方向旋轉至圖3的位置,使得ON在∠AOC的內部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;

3)在上述直角三角板從圖1逆時針旋轉一周的過程中,若三角板繞點O5°每秒的速度旋轉,當直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運動時間t的值.

查看答案和解析>>

同步練習冊答案