【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,該直線與軸、軸分別交于點(diǎn),以為邊在第一象限內(nèi)作正△ABC.若點(diǎn)在第一象限內(nèi),且滿足,則的取值范圍是( )
A. B. C. D.
【答案】A
【解析】分析:根據(jù)直線AB的解析式可求出A、B的坐標(biāo),此時可得出∠OBA=60°,那么AC∥y軸,因此C點(diǎn)的橫坐標(biāo)與A點(diǎn)的橫坐標(biāo)相同,C點(diǎn)的縱坐標(biāo)是B點(diǎn)縱坐標(biāo)的2倍據(jù)此可求出C點(diǎn)的坐標(biāo).由點(diǎn)在第一象限內(nèi),且滿足,得到P在過點(diǎn)C且與AB平行的直線l上.設(shè)直線l為y=﹣x+b,把C(,2)代入求得b的值,進(jìn)而得出直線l的解析式,從而得出結(jié)論.
詳解:由直線y=﹣x+1,求得點(diǎn)A的坐標(biāo)為(,0),點(diǎn)B的坐標(biāo)為(0,1),∴在Rt△AOB中,OA=,OB=1,∴AB=2,tan∠OBA=,
∴∠OBA=60°,∴∠OAB=90°﹣∠OBA=30°.
∵△ABC是等邊三角形,∴CA=AB=2,∠CAB=60°,
∴∠CAD=∠CAB+∠OAB=90°,
∴點(diǎn)C的坐標(biāo)為(,2).
∵S△AOB=OB×OA==,S△ABC==,又點(diǎn)在第一象限內(nèi),且滿足,∴P在過點(diǎn)C且與AB平行的直線l上.設(shè)直線l為y=﹣x+b,把C(,2)代入,得:-1+b=2,解得:b=3.∴直線l為y=﹣x+3.
∵點(diǎn)在第一象限內(nèi),故0<n<3.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)教研部門對本區(qū)初二年級的學(xué)生進(jìn)行了一次隨機(jī)抽樣問卷調(diào)查,其中有這樣一個問題:老師在課堂上放手讓學(xué)生提問和表達(dá)( )
A.從不 B.很少 C.有時 D.常常 E.總是
答題的學(xué)生在這五個選項中只能選擇一項.下面是根據(jù)學(xué)生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級的學(xué)生參加了本次問卷調(diào)查;
(2)請把這幅條形統(tǒng)計圖補(bǔ)充完整;
(3)在扇形統(tǒng)計圖中,“總是”的圓心角為 .(精確到度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對正整數(shù)n的“F”運(yùn)算:①當(dāng)n為奇數(shù)時,F(n)=3n+1;②當(dāng)n為偶數(shù)時,F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行,例如,取n=24,則:
若n=13,則第2018次“F”運(yùn)算的結(jié)果是( 。
A. 1 B. 4 C. 2018 D. 42018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市實施“城鄉(xiāng)環(huán)境綜合治理”期間,某校組織學(xué)生開展“走出校門,服務(wù)社會”的公益活動.八年級一班王浩根據(jù)本班同學(xué)參加這次活動的情況,制作了如下的統(tǒng)計圖表:
該班學(xué)生參加各項服務(wù)的頻數(shù)、頻率統(tǒng)計表:
服務(wù)類別 | 頻數(shù) | 頻率 |
文明宣傳員 | 4 | 0.08 |
文明勸導(dǎo)員 | 10 | |
義務(wù)小警衛(wèi) | 8 | 0.16 |
環(huán)境小衛(wèi)士 | 0.32 | |
小小活雷鋒 | 12 | 0.24 |
請根據(jù)上面的統(tǒng)計圖表,解答下列問題:
(1)該班參加這次公益活動的學(xué)生共有 名;
(2)請補(bǔ)全頻數(shù)、頻率統(tǒng)計表和頻數(shù)分布直方圖;
(3)若八年級共有900名學(xué)生報名參加了這次公益活動,試估計參加文明勸導(dǎo)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,,垂足分別為E,F.
(1)求證:△BED≌△CFD;
(2)若∠A=90°,求證:四邊形DFAE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)E.
(1)當(dāng)m=3時,點(diǎn)B的坐標(biāo)為 ,點(diǎn)E的坐標(biāo)為 ;
(2)隨著m的變化,試探索:點(diǎn)E能否恰好落在x軸上?若能,請求出m的值;若不能,請說明理由.
(3)如圖,若點(diǎn)E的縱坐標(biāo)為-1,且點(diǎn)(2,a)落在△ADE的內(nèi)部,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個邊長等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個邊長等于此時矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當(dāng)n=3時,a的值為( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BAC=90°,AD⊥BC于D,E是AC的中點(diǎn),ED的延長線交AB的延長線于點(diǎn)F.求證:
(1)△DFB∽△AFD;
(2)AB:AC=DF:AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖1中的正方形剪開得到圖2,則圖2中共有4個正方形;將圖2中的一個正方形剪開得到圖3,則圖3中共有7個正方形;……如此剪下去,則第n個圖形中正方形的個數(shù)是多少?
(1)將下表填寫完整:
圖(n) | 1 | 2 | 3 | 4 | 5 | …… | n |
正方形的個數(shù) | 1 | 4 | 7 | …… | an |
(2)an= (用含n的代數(shù)式表示)
(3)按照上述方法,能否得到2019個正方形?如果能,請求出n;如果不能,請簡述理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com