【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),經(jīng)過(guò)點(diǎn)的直線與該拋物線交于另一點(diǎn),并且直線軸,點(diǎn)為該拋物線上一個(gè)動(dòng)點(diǎn),點(diǎn)為直線上一個(gè)動(dòng)點(diǎn).
(1)當(dāng),且時(shí),連接,,求證:四邊形是平行四邊形
(2)當(dāng)時(shí),連接,線段與線段交于點(diǎn),,且,連接,求線段的長(zhǎng);
(3)連接,,試探究:是否存在點(diǎn),使得與互為余角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2);(3)存在,
【解析】
(1)由二次函數(shù)的性質(zhì),先求出點(diǎn)A、B、C的坐標(biāo),然后得到點(diǎn)D的坐標(biāo),則得到與的值,把點(diǎn)P代入拋物線,求出m的值,由平行四邊形的判定,即可得到答案;
(2)由題意,表示PQ的長(zhǎng)度,然后求出,,再由,得到,即可得到答案;
(3)根據(jù)題意,利用三角函數(shù)得到,然后分兩種情況進(jìn)行分類(lèi)討論:①當(dāng)點(diǎn)在直線上方時(shí),;②當(dāng)點(diǎn)在直線下方時(shí),,
;分別求出m的值,即可得到點(diǎn)P的坐標(biāo).
解:如圖:
(1)證明:當(dāng)時(shí),,
解得,
,
.
當(dāng)時(shí),,
.
∵直線軸,
∴直線的解析式為.
,
解得,
,
.
∵點(diǎn)在直線上,
.
,
,點(diǎn)在該拋物線上,
解得或 (舍去).
∵直線軸,
,
,
,
∴四邊形是平行四邊形.
(2)兩點(diǎn)的橫坐標(biāo)都是,
∴直線軸,
設(shè),則,
,
解得:或.
,
,.
∵直線軸,
,
∴,
,
,
,
,
;
(3)假設(shè)存在點(diǎn),使得與互為余角,即.
,
.
,
連接.
∵直線軸,直線軸,
是直角三角形,且.
①當(dāng)點(diǎn)在直線上方時(shí),
(i)若點(diǎn)在軸左側(cè),則,
.
,解得 (舍去), (舍去).
(ii)若點(diǎn)在軸右側(cè),則,
.
,解得 (舍去),.
,
②當(dāng)點(diǎn)在直線下方時(shí),,
,解得 (舍去),
,
;
綜上,存在點(diǎn),使得與互為余角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)著名的希波克拉蒂月牙問(wèn)題:如圖1,以直角三角形的各邊為直徑分別向上作半圓,則直角三角形的面積可表示成兩個(gè)月牙形的面積之和,現(xiàn)將三個(gè)半圓紙片沿直角三角形的各邊向下翻折得到圖2,把較小的兩張半圓紙片的重疊部分面積記為S1,大半圓紙片未被覆蓋部分的面積記為S2,則直角三角形的面積可表示成( 。
A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1S2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,AD為弦,∠DBC=∠A.
(1)求證:BC是半圓O的切線;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年的寒假是“不同尋!钡囊粋(gè)假期.在這個(gè)超長(zhǎng)假期里,某中學(xué)隨機(jī)對(duì)本校部分同學(xué)進(jìn)行“抗疫有我,在家可以這么做”的問(wèn)卷調(diào)查:A扎實(shí)學(xué)習(xí)、B經(jīng)典閱讀、C分擔(dān)勞動(dòng)、D樂(lè)享健康,(每位同學(xué)只能選一個(gè)),并根據(jù)調(diào)查結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖提供信息,解答問(wèn)題:
(1)本次一共調(diào)查了_______名同學(xué);
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A所對(duì)應(yīng)的圓心角為 度;
(3)若該校共有1600名同學(xué),請(qǐng)你估計(jì)選擇A有多少名同學(xué)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),頂點(diǎn)坐標(biāo)為,與軸的交點(diǎn)在,之間(包含端點(diǎn)),以下結(jié)論: ①;②;③;④關(guān)于的方程沒(méi)有實(shí)數(shù)根.其中正確的結(jié)論有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線的對(duì)稱(chēng)軸為,與軸交于、兩點(diǎn),與軸交于點(diǎn),其中、.
(1)求這條拋物線的函數(shù)表達(dá)式.
(2)在對(duì)稱(chēng)軸上是否存在一點(diǎn),使得的周長(zhǎng)最。舸嬖谡(qǐng)求出點(diǎn)的坐標(biāo).若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為培養(yǎng)學(xué)生良好學(xué)習(xí)習(xí)慣,某學(xué)校計(jì)劃舉行一次“整理錯(cuò)題集”的展示活動(dòng),對(duì)該校部分學(xué)生“整理錯(cuò)題集”的情況進(jìn)行了一次抽樣調(diào)查,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計(jì)圖表.
整理情況 | 頻數(shù) | 頻率 |
非常好 | 0.21 | |
較好 | 70 | 0.35 |
一般 | m | |
不好 | 36 |
請(qǐng)根據(jù)圖表中提供的信息,解答下列問(wèn)題:
(1)本次抽樣共調(diào)查了 名學(xué)生;
(2)m= ;
(3)該校有1500名學(xué)生,估計(jì)該校學(xué)生整理錯(cuò)題集情況“非常好”和“較好”的學(xué)生一共約多少名?
(4)某學(xué)習(xí)小組4名學(xué)生的錯(cuò)題集中,有2本“非常好”(記為A1、A2),1本“較好”(記為B),1本“一般”(記為C),這些錯(cuò)題集封面無(wú)姓名,而且形狀、大小、顏色等外表特征完全相同,從中抽取一本,不放回,從余下的3本錯(cuò)題集中再抽取一本,請(qǐng)用“列表法”或“畫(huà)樹(shù)形圖”的方法求出兩次抽到的錯(cuò)題集都是“非常好”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月18日,一年一度的“風(fēng)箏節(jié)”活動(dòng)在市政廣場(chǎng)舉行,如圖,廣場(chǎng)上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測(cè)得風(fēng)箏A的仰角為67°,同一時(shí)刻小蕓在附近一座距地面30米高(BC=30米)的居民樓頂B處測(cè)得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD=40米,牽引端距地面高度DE=1.5米,根據(jù)以上條件計(jì)算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.414).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)分別落在點(diǎn),,處.
(1)直接填空:當(dāng)時(shí),點(diǎn)所經(jīng)過(guò)的路徑的長(zhǎng)為___________;
(2)若點(diǎn),,在同一直線上,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com