【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,3)它的對(duì)稱軸是直線x=

(1)求拋物線的解析式;
(2)M是線段AB上的任意一點(diǎn),當(dāng)△MBC為等腰三角形時(shí),求M點(diǎn)的坐標(biāo).

【答案】
(1)

解:設(shè)拋物線的解析式

把A(2,0)、C(0,3)代入得:

解得:


(2)

解:由y=0得

∴x1=2,x2=﹣3

∴B(﹣3,0)

①CM=BM時(shí)

∵BO=CO=3 即△BOC是等腰直角三角形

∴當(dāng)M點(diǎn)在原點(diǎn)O時(shí),△MBC是等腰三角形

∴M點(diǎn)坐標(biāo)(0,0)

②如圖所示:當(dāng)BC=BM時(shí)

在Rt△BOC中,BO=CO=3,

由勾股定理得BC=

∴BC= ,

∴BM=

∴M點(diǎn)坐標(biāo)( ,

綜上所述:M點(diǎn)坐標(biāo)為:M1 ,M2(0,0).


【解析】(1)根據(jù)拋物線的對(duì)稱軸得到拋物線的頂點(diǎn)式,然后代入已知的兩點(diǎn)理由待定系數(shù)法求解即可;(2)首先求得點(diǎn)B的坐標(biāo),然后分CM=BM時(shí)和BC=BM時(shí)兩種情況根據(jù)等腰三角形的性質(zhì)求得點(diǎn)M的坐標(biāo)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在如圖所示的數(shù)軸上,把數(shù)﹣2 ,4,,2.5表示出來(lái),并用將它們連接起來(lái);

(2)假如在原點(diǎn)處放立一擋板(厚度不計(jì)),有甲、乙兩個(gè)小球(忽略球的大小,可看作一點(diǎn)),小球甲從表示數(shù)﹣2的點(diǎn)處出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿?cái)?shù)軸向左運(yùn)動(dòng);同時(shí)小球乙從表示數(shù)4的點(diǎn)處出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿?cái)?shù)軸向左運(yùn)動(dòng),在碰到擋板后即刻按原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

請(qǐng)從A,B兩題中任選一題作答.

A.當(dāng)t=3時(shí),求甲、乙兩小球之間的距離.

B.用含t的代數(shù)式表示甲、乙兩小球之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長(zhǎng)CD交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索新知:

如圖1,射線OC的內(nèi)部,圖中共有3個(gè)角:,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線OC的“巧分線”.

(1)一個(gè)角的平分線______這個(gè)角的“巧分線”;填“是”或“不是”

(2)如圖2,若,且射線PQ的“巧分線”,則______;用含的代數(shù)式表示出所有可能的結(jié)果

深入研究:

如圖2,若,且射線PQ繞點(diǎn)PPN位置開(kāi)始,以每秒的速度逆時(shí)針旋轉(zhuǎn),當(dāng)PQPN時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)的時(shí)間為t秒.

(3)當(dāng)t為何值時(shí),射線PM的“巧分線”;

(4)若射線PM同時(shí)繞點(diǎn)P以每秒的速度逆時(shí)針旋轉(zhuǎn),并與PQ同時(shí)停止,請(qǐng)直接寫(xiě)出當(dāng)射線PQ的“巧分線”時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系xoy中,點(diǎn)A、B的坐標(biāo)分別是A(-1,0),B(3,0),將線段AB向上平移2個(gè)單位,再向右平移1個(gè)單位,得到線段DC,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是D、C,連接AD、BC.

(1)直接寫(xiě)出點(diǎn)C,D的坐標(biāo);

(2)求四邊形ABCD的面積;

(3)點(diǎn)P為線段BC上任意一點(diǎn)(與點(diǎn)B、C不重合),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科學(xué)技術(shù)協(xié)會(huì)為倡導(dǎo)青少年主動(dòng)進(jìn)行研究性學(xué)習(xí),積極研究身邊的科學(xué)問(wèn)題,組織了以“體驗(yàn)、創(chuàng)新、成長(zhǎng)”為主題的青少年科技創(chuàng)大賽,在層層選拔的基礎(chǔ)上,所有推薦參賽學(xué)生分別獲得了一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),工作人員根據(jù)獲獎(jiǎng)情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給出的信息解答下列問(wèn)題:
(1)這次大賽獲得三等獎(jiǎng)的學(xué)生有多少人?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中,表示三等獎(jiǎng)扇形的圓心角是多少度?
(4)若給所有推薦參賽學(xué)生每人發(fā)一張相同的卡片,各自寫(xiě)上自己的名字,然后把卡片放入一個(gè)不透明的袋子里,搖勻后任意摸出一張,求摸出寫(xiě)有一等獎(jiǎng)學(xué)生名字卡片的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x1x2是一元二次方程2x2﹣7x+5=0的兩根,利用一元二次方程根與系數(shù)的關(guān)系求下列各式的值

1x12x2+x1x22; (2)(x1x22

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱.

(1)求一次函數(shù),反比例函數(shù)的解析式;
(2)求證:點(diǎn)C為線段AP的中點(diǎn);
(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,說(shuō)明理由并求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)EBC上一點(diǎn),連接DE,把DEC沿DE折疊得到DEF,延長(zhǎng)EFABG,連接DG

(1)求EDG的度數(shù).

(2)如圖2,EBC的中點(diǎn),連接BF

求證:BFDE

若正方形邊長(zhǎng)為12,求線段AG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案