【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)經(jīng)典,其中對(duì)勾股定理的論述比西方早一千多年,其中有這樣一個(gè)問題:今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1.如圖,已知弦尺,弓形高寸,(注:1=10寸)問這塊圓柱形木材的直徑是(

A.13B.6.5C.20D.26

【答案】D

【解析】

設(shè)這塊圓柱形木材的半徑為r.在RtADO中,AD5,ODr1OAr,則有r252+(r12,解方程即可.

解:如圖:設(shè)這塊圓柱形木材的半徑為r

由題意得:OCAB,尺=10寸,則AD5寸,

RtADO中,AD5ODr1,OAr,

則有r252+(r12

解得r13,

∴這塊圓柱形木材的直徑為26寸,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,平分

1)如圖1,求證:;

2)如圖2,,弦于點(diǎn),若,求證:;

3)如圖3,在(2)的條件下,點(diǎn)上一點(diǎn),連接,,若,,求線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C

1)求點(diǎn)AB,C的坐標(biāo);

2)求證:ABC為直角三角形;

3)如圖,動(dòng)點(diǎn)E,F同時(shí)從點(diǎn)A出發(fā),其中點(diǎn)E以每秒2個(gè)單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒個(gè)單位長度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)F停止運(yùn)動(dòng)時(shí),點(diǎn)E隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,連結(jié)EF,將AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到DEF.當(dāng)點(diǎn)FAC上時(shí),是否存在某一時(shí)刻t,使得DCO≌△BCO?(點(diǎn)D不與點(diǎn)B重合)若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),CD⊥AB于點(diǎn)DPAB延長線上一點(diǎn),∠PCD=2∠BAC

1求證:CP為⊙O的切線;

2BP=1,CP=,求 ⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,DE分別是BCCB延長線上的點(diǎn),且,連接AD、AE,BM、CN分別是△ABE和△ACD的高線,垂足分別為M、N, BGCH分別是∠ABE和∠ACD的平分線,分別交AE、AD于點(diǎn)G、H.

證明:(1)ABE∽△DCA;

(2)sinMBG=sinNCH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(﹣4,﹣2)和Ba4.

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦BC=4cm,F是弦BC的中點(diǎn),∠ABC=60°.若動(dòng)點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā)在AB上沿著A→B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0≤t8),連接EF,當(dāng)△BEF是直角三角形時(shí),t(s)的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù),下列結(jié)論中不正確的是(

A.圖象必經(jīng)過點(diǎn) B. 的增大而增大

C.圖象在第二,四象限內(nèi)D.,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在反比例函數(shù)的圖象上,軸于點(diǎn)C

求反比例函數(shù)的表達(dá)式;

的面積;

若將繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)得到點(diǎn)O、A的對(duì)應(yīng)點(diǎn)分別為、,點(diǎn)是否在反比例函數(shù)的圖象上?若在請(qǐng)直接寫出該點(diǎn)坐標(biāo),若不在請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案