【題目】(12分)某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
紅星中學(xué)根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實踐活動,設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
(2)若要保證租車費用不超過1900元,求x的最大值;
(3)在(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.
【答案】(1)30(5﹣x);280(5﹣x);(2)4;(3)有兩種:A型3輛,B型2輛或A型4輛,B型1輛,最省錢的方案是A型3輛,B型2輛.
【解析】
試題分析:(1)由已知有:載客量=汽車輛數(shù)×單車載客量,租金=汽車輛數(shù)×單車租金,列出代數(shù)表達(dá)式即可;
(2)由題意,表示出租車總費用,列出不等式即可;
(3)由(2)得出x的取值范圍,一一列舉計算,排除不合題意方案即可.
試題解析:(1)∵載客量=汽車輛數(shù)×單車載客量,租金=汽車輛數(shù)×單車租金,∴B型客車載客量=30(5﹣x);B型客車租金=280(5﹣x);故答案為:30(5﹣x);280(5﹣x);
(2)根據(jù)題意,400x+280(5﹣x)≤1900,解得:,∴x的最大值為4;
(3)由(2)可知,,故x可能取值為0、1、2、3、4,
①A型0輛,B型5輛,租車費用為400×0+280×5=1400元,但載客量為45×0+30×5=150<195,故不合題意舍去;
②A型1輛,B型4輛,租車費用為400×1+280×4=1520元,但載客量為45×1+30×4=165<195,故不合題意舍去;
③A型2輛,B型3輛,租車費用為400×2+280×3=1640元,但載客量為45×2+30×3=180<195,故不合題意舍去;
④A型3輛,B型2輛,租車費用為400×3+280×2=1760元,但載客量為45×3+30×2=195=195,符合題意;
⑤A型4輛,B型1輛,租車費用為400×4+280×1=1880元,但載客量為45×4+30×1=210,符合題意;
故符合題意的方案有④⑤兩種,最省錢的方案是A型3輛,B型2輛.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD為△ABC的中線,CE⊥BD于E,AF⊥BD于F.于是小白說:
“BE+BF=2BD”.你認(rèn)為他的判斷對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是真命題的是( 。
A.多邊形的內(nèi)角和為360°
B.若2a﹣b=1,則代數(shù)式6a﹣3b﹣3=0
C.二次函數(shù)y=(x﹣1)2+2的圖象與y軸的交點的坐標(biāo)為(0,2)
D.矩形的對角線互相垂直平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一個銳角的余角比這個角的補(bǔ)角小90°;
B. 如果一個角有補(bǔ)角,那么這個角必是鈍角;
C. 若∠1+∠2+∠3=180°,則∠1、∠2、∠3互為補(bǔ)角;
D. 如果∠α和∠β互為余角,∠β與∠θ互為余角,那么∠α與∠θ互為余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列判斷:①在數(shù)軸上,原點兩旁的兩個點所表示的數(shù)都是互為相反數(shù);②任何正數(shù)必定大于它的倒數(shù);③5ab, , 都是整式;④x2﹣xy+y2是按字母y的升冪排列的多項式,其中判斷正確的是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,∠AOC為∠AOB外的一個銳角,且∠AOC=30°,射線OM平分∠BOC,ON平分∠AOC.
(1)求∠MON的度數(shù);
(2)如果(1)中∠AOB=α,其他條件不變,求∠MON的度數(shù);
(3)如果(1)中∠AOC=β(β為銳角),其他條件不變,求∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡再求值
(1)﹣9y+6x2+3(y﹣ x2),其中x=2,y=﹣1.
(2)2a2b﹣[2a2+2(a2b+2a2)],其中a= ,b=1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com