【題目】(1)已知y=(m2+m)+(m﹣3)x+m2x的二次函數(shù),求出它的解析式.

(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點(diǎn)坐標(biāo)并求出函數(shù)的最大值或最小值.

【答案】(1)由題意可得:

解①得:m1=3,m2=﹣1,

由②得:m≠0m≠﹣1,

∴m=3,

∴y=12x2+9;

(2)y=﹣x2+5x﹣7

=﹣(x2﹣5x+)﹣7

=﹣(x﹣2+﹣7

=﹣(x﹣2. ,

頂點(diǎn)坐標(biāo)為:(, ﹣),有最大值為:﹣

【解析】試題分析:1)直接利用二次函數(shù)的定義得出等式求出即可;
2)利用配方法求出其頂點(diǎn)坐標(biāo)即可.

試題解析:(1)由題意可得:

解①得:

由②得:m≠0m≠1,

m=3

(2)

頂點(diǎn)坐標(biāo)為: 有最大值為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,CD、BE分別是△ABC的角平分線,AGBC,AGBG,下列結(jié)論:①∠BAG2ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB135°,其中正確的結(jié)論有( 。﹤

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1,(1)abc>0;(2)4a+2b+c>0;(3)4ac﹣b2<16a;(4)<a<;(5)b<c,其中正確的結(jié)論有( 。

A. (2)(3)(4)(5) B. (1)(3)(4)(5) C. (1)(3)(4) D. (1)(2)(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點(diǎn)B1,以O(shè)B1為邊長作等邊三角形A1OB1,過點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長作等邊三角形A2A1B2,過點(diǎn)A2作A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點(diǎn)A2017的橫坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)中,A (0,5)、B (4,0)、C (2,5),四邊形AOBC經(jīng)過平移后得到四邊形AOBC′.

(1) 如圖1,若A′(35),四邊形AOBC內(nèi)部一點(diǎn)M(ab2,6a7)經(jīng)過平移后得到點(diǎn)N(a2b7,4b6),求M點(diǎn)的坐標(biāo)

(2) 如圖2,若四邊形AOBC向右平移m個單位長度(m0).當(dāng)m為何值時,重疊部分的面積比四邊形BBCC的面積大

(3) 如圖3,若四邊形AOBC向上平移2個單位長度,直接寫出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC中,OA=2,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于E、F.

(1)若E是AB的中點(diǎn),求F點(diǎn)的坐標(biāo);

(2)若將BEF沿直線EF對折,B點(diǎn)落在x軸上的D點(diǎn),作EGOC,垂足為G,請證明EGD∽△DCF,并求出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=,FDA延長線上一點(diǎn),GCF上一點(diǎn),且ACG=AGC,GAF=F=20°,則AB=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OP∠BOC的平分線,OE⊥AB,OF⊥CD.

(1)圖中除直角外,還有相等的角嗎?請寫出兩對;

(2)如果∠AOD=50°,求∠DOP的度數(shù).

(3)OP平分∠EOF嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A6,0),B85),將線段OA平移至CB,點(diǎn)Dx,0)在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD

1)求對角線AC的長;

2ODCABD的面積分別記為S1,S2,設(shè)SS1S2,求S關(guān)于x的函數(shù)解析式,并探究是否存在點(diǎn)D使SDBC的面積相等,如果存在,請求出x的值(或取值范圍);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案