已知二次函數(shù)y=x2+2x-1.
(1)寫出它的頂點坐標;
(2)當x取何值時,y隨x的增大而增大;
(3)求出圖象與軸的交點坐標.

(1)(-1,-2);(2)x>-1;(3)坐標為.

解析試題分析:(1)配方后直接寫出頂點坐標即可;
(2)確定對稱軸后根據(jù)其開口方向確定其增減性即可;
(3)令y=0后求得x的值后即可確定與x軸的交點坐標;
試題解析:(1)y=x2+2x-1=(x+1)2-2,
∴頂點坐標為:(-1,-2);
(2)∵y=x2+2x-1=(x+1)2-2的對稱軸為:x=-1,開口向上,
∴當x>-1時,y隨x的增大而增大;
(3)令y=x2+2x-1=0,解得:x= 或x=,
∴圖象與x軸的交點坐標為
考點:1.二次函數(shù)的性質;2.拋物線與x軸的交點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

已知:紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該建材店為提高經(jīng)營利潤,準備采取降價的方式進行促銷.經(jīng)市場調查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7. 5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數(shù)關系式(不要求寫出x的取值范圍);
(3)該建材店要獲得最大月利潤,售價應定為每噸多少元?
(4)小靜說:“當月利潤最大時,月銷售額也最大.”你認為對嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某商場銷售某種品牌的手機,每部進貨價為2500元.市場調研表明:當銷售價為2900元時,平均每天能售出8部;而當銷售價每降低50元時,平均每天就能多售出4部.
(1)當售價為2800元時,這種手機平均每天的銷售利潤達到多少元?
(2)若設每部手機降低x元,每天的銷售利潤為y元,試寫出y與x之間的函數(shù)關系式.
(3)商場要想獲得最大利潤,每部手機的售價應訂為多少元?此時的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)

(1)證明:不論取何值,該函數(shù)圖象與軸總有兩個公共點;
(2)若該函數(shù)的圖象與軸交于點(0,5),求出頂點坐標,并畫出該函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)圖像與y軸交于點(0,-4),并經(jīng)過(-1,-6)和(1,2)
(1)求這個二次函數(shù)的解析式;
(2)求出這個函數(shù)的圖像的開口方向,對稱軸和頂點坐標;
(3)該函數(shù)圖像與x軸的交點坐標                         .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點,

(1)求出這條拋物線;
(2)求它與x軸的交點和拋物線頂點的坐標;
(3)x取什么值時,拋物線在x軸上方?
(4)x取什么值時,y的值隨x的增大而減小?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,求此二次函數(shù)的解析式和拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y(tǒng)=a(x-6)2+2.6已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.

(1)求y與x的關系式;(不要求寫出自變量x的取值范圍)
(2)球能否越過球網(wǎng)?球會不會出界?請說明理由;

查看答案和解析>>

同步練習冊答案