已知:紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該建材店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7. 5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該建材店要獲得最大月利潤,售價(jià)應(yīng)定為每噸多少元?
(4)小靜說:“當(dāng)月利潤最大時(shí),月銷售額也最大.”你認(rèn)為對(duì)嗎?請(qǐng)說明理由.
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量60噸;
(2)y=﹣x2+315x﹣24000;
(3)要獲得最大月利潤,售價(jià)應(yīng)定為每噸210元;
(4)小靜說的不對(duì).理由見解析.
解析試題分析:本題屬于市場(chǎng)營銷問題,月利潤=(每噸售價(jià)﹣每噸其它費(fèi)用)×銷售量,銷售量與每噸售價(jià)的關(guān)系要表達(dá)清楚.再用二次函數(shù)的性質(zhì)解決最大利潤問題.
試題解析:(1)由題意得:
45+×7.5=60(噸);
(2)由題意:
y=(x﹣100)(45+×7.5),
化簡(jiǎn)得:y=﹣x2+315x﹣24000;
(3)y=﹣x2+315x﹣24000=﹣(x﹣210)2+9075.
要獲得最大月利潤,材料的售價(jià)應(yīng)定為每噸210元;
(4)我認(rèn)為,小靜說的不對(duì).
理由:當(dāng)月利潤最大時(shí),x為210元,
而對(duì)于月銷售額W=x(45+×7.5)=﹣(x﹣160)2+19200來說,
當(dāng)x為160元時(shí),月銷售額W最大.
∴當(dāng)x為210元時(shí),月銷售額W不是最大.
∴小靜說的不對(duì).
考點(diǎn):二次函數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)y=ax2+bx+3的圖象過點(diǎn)A(-1,0),對(duì)稱軸為過點(diǎn)(1,0)且與y軸平行的直線.
(1)求點(diǎn)B的坐標(biāo)
(2)求該二次函數(shù)的關(guān)系式;
(3)結(jié)合圖象,解答下列問題:
①當(dāng)x取什么值時(shí),該函數(shù)的圖象在x軸上方?
②當(dāng)-1<x<2時(shí),求函數(shù)y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,﹣),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的解析式及A、B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請(qǐng)說明理由;
(3)以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與x軸相交于兩點(diǎn)A(1,0),B(-3,0),與y軸相交于點(diǎn)C(0,3).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)如果點(diǎn)是拋物線上的一點(diǎn),求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為M(2,1),且過點(diǎn)N(3,2).
(1)求這個(gè)二次函數(shù)的關(guān)系式;
(2)若一次函數(shù)y=-x-4的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,P為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PQ∥y軸交直線AB于點(diǎn)Q,以PQ為直徑作圓交直線AB于點(diǎn)D.設(shè)點(diǎn)P的橫坐標(biāo)為n,問:當(dāng)n為何值時(shí),線段DQ的長取得最小值?最小值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線(b,c是常數(shù),且c<0)與軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).
(1)請(qǐng)直接寫出點(diǎn)OA的長度;
(2)若常數(shù)b,c滿足關(guān)系式:.求拋物線的解析式.
(3)在(2)的條件下,點(diǎn)P是軸下方拋物線上的動(dòng)點(diǎn),連接PB、PC.設(shè)△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有多少個(gè)(直接寫出結(jié)果)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某公司經(jīng)銷一種綠茶,每千克成本為50元.市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量(千克)隨銷售單價(jià)(元/千克)的變化而變化,具體關(guān)系式為:,且物價(jià)部門規(guī)定這種綠茶的銷售單價(jià)不得高于90元/千克.設(shè)這種綠茶在這段時(shí)間內(nèi)的銷售利潤為(元),解答下列問題:
(1)求與的關(guān)系式;
(2)當(dāng)取何值時(shí),的值最大?
(3)如果公司想要在這段時(shí)間內(nèi)獲得2 250元的銷售利潤,銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
高盛超市準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個(gè)進(jìn)價(jià)為40元,經(jīng)市場(chǎng)預(yù)測(cè),銷售定價(jià)為50元,可售出400個(gè);定價(jià)每增加1元,銷售量將減少10個(gè).
(1)設(shè)每個(gè)小家電定價(jià)增加元,每售出一個(gè)小家電可獲得的利潤是多少元?(用含的代數(shù)式表示)
(2)當(dāng)定價(jià)增加多少元時(shí),商店獲得利潤6000元 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=x2+2x-1.
(1)寫出它的頂點(diǎn)坐標(biāo);
(2)當(dāng)x取何值時(shí),y隨x的增大而增大;
(3)求出圖象與軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com