【題目】“十一”期間沈陽世博園(10月1日)的進園人數(shù)為萬人,以后的6天里每天的進園人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù)負數(shù)表示比前一天少的人數(shù),單位:萬人)
日期 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數(shù)變化 |
(1)10月2日的進園人數(shù)是多少?
(2)10月1日-10月7日這7天內的進園人數(shù)最多的是哪天?最少的是哪天?它們相差多少?
【答案】(1)萬人;(2)10月2日最多,10月5日最少,相差萬人.
【解析】
(1)根據(jù)題意,利用有理數(shù)加法運算法則計算出答案即可;
(2)根據(jù)題意得出各天之中進園的人數(shù),然后進一步加以比較即可.
(1)根據(jù)題意可得:(萬人),
答:10月2日的進園人數(shù)是萬人;
(2)根據(jù)題意可得各天的進園人數(shù)為:
10月1日:20.3萬人;10月2日:(萬人)
10月3日:(萬人);10月4日:(萬人);
10月5日:(萬人);10月6日:(萬人);
10月7日:(萬人)
∴10月2日人最多,10月5日人最少,
二者相差(萬人).
答:10月2日人最多,10月5日人最少,相差萬人.
科目:初中數(shù)學 來源: 題型:
【題目】已知A(α,0)、B(b,0),點C在y軸上,且由|a+4|+(b-2)2=0.
(1)若S△ABC=6,求C點的坐標;
(2)將C向右平移,使OC平分∠ACB,點P是x軸上B點右邊的一動點,PQ⊥OC于Q點.當∠ABC-∠BAC=60°時,求∠APQ的度數(shù);
(3)在(2)的條件下,將線段AC平移,使其經(jīng)過P點得線段EF,作∠APE的角平分線交OC的延長線于點M.當P點在x軸上運動時,求∠M-∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,且M在AD上以1cm/s的速度由A向D運動,點N在BC上以2cm/s的速度由C向B運動.
(1)幾秒后MNCD為平行四邊形?
(2)幾秒后ABNM為矩形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上的A、B兩點所對應的數(shù)分別為a、b.P為數(shù)軸上的一個動點.其中a,b滿足(a﹣1)2+|b+5|=0,
(1)若點P為AB的中點,求P點對應的數(shù).
(2)若點P從A點出發(fā),以每秒2個單位的速度向左運動,t秒后,求P點所對應的數(shù)以及PB的距離.
(3)若數(shù)軸上點M、N所對應的數(shù)為m、n,其中A為PM的中點,B為PN的中點,無論點P在何處,是否為一個定值?若是,求出定值:若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的∠ABC和∠ACB的平分線BE,CF相交于點G.求證:
⑴∠BGC=180°-(∠ABC+∠ACB)
⑵∠BGC=90°+∠A
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點O為直線AB上一點,過點O作射線OC,使∠AOC=70°.
(1)如圖1,若OD平分∠AOC,求∠DOB的度數(shù);
(2)射線OM從OA出發(fā),繞點O以每秒6°的速度逆時針旋轉,同時,射線ON從OC出發(fā)繞點O以每秒4°的速度逆時針旋轉,OM與ON同時出發(fā)(當ON首次與OB重合時,兩條射線都停止運動),設運動的時間為t秒.
(i)如圖2,在整個運動過程中,當∠BON=2∠COM時,求t的值;
(ⅱ)如圖3,OP平分∠AOM,OQ平分∠BON,是否存在合適的t,使OC平分∠POQ,若存在,求出t的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com