【題目】中,,點所在平面內(nèi)一點,過點分別作于點,于點,交于點.

若點上(如圖①),此時,可得結(jié)論:.

請應用上述信息解決下列問題:

當點分別在內(nèi)(如圖②),外(如圖③)時,上述結(jié)論是否成立?若成立,請給予證明;若不成立,,,與之間又有怎樣的數(shù)量關(guān)系,請寫出你的猜想,不需要證明.

【答案】當點內(nèi)時,成立,證明見解析;當點外時,不成立,數(shù)量關(guān)系為.

【解析】

當點內(nèi)時(如圖②),通過FDABAB=AC可知,FD=FC.PD+PF=FC.要想FC+PE=AB,根據(jù)等量代換,只需要知道PE=AF,PE=AF可通過證明四邊形AEPF是平行四邊形,用對邊相等得到;

當點外時(如圖③),類似于①可知FD=FC;同樣可通過證明四邊形AEPF是平行四邊形,得到對邊PE=AF,此時FD=PF-PD,所以數(shù)量關(guān)系上類似于①但不同于①,只是FD=PF-PD的區(qū)別.

解:當點內(nèi)時,上述結(jié)論成立.

證明:∵,,∴四邊形為平行四邊形,

,∵,∴,

又∵,∴,∴,∴,

,即

又∵,

;

當點外時,上述結(jié)論不成立,此時數(shù)量關(guān)系為.

證明:∵,,∴四邊形為平行四邊形,

,∴,

又∵,∴,∴,∴,

,即,

又∵,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周

寫出點B的坐標______

當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.

在移動過程中,當點Px軸距離為5個單位長度時,求點P移動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,延長線上一點,的平分線相交于點,則(   )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,OAOB,點B的坐標為(1,0),AB,線段OB上的動點(C不與OB重合),連接AC,ACCD,DEx軸,垂足為點E.

(1)求證:ACOCDE;

(2)猜想BDE的形狀,并證明結(jié)論:

(3)如圖2,BCD為等腰三角形時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為考察兩名實習工人的工作情況,質(zhì)檢部將他們工作某一周每天生產(chǎn)合格產(chǎn)品的個數(shù)整理成甲、乙兩組數(shù)據(jù),如下表:

2

6

7

7

8

2

4

5

8

8

根據(jù)以上數(shù)據(jù),下面說法正確的是(

A.甲、乙的眾數(shù)相同B.甲、乙的中位數(shù)相同

C.甲的平均數(shù)小于乙的平均數(shù)D.甲的方差小于乙的方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON90°,已知△ABC中,ACBCAB6,△ABC的頂點AB分別在邊OM、ON上,當點B在邊ON上運動時,A隨之在OM上運動,△ABC的形狀始終保持不變,在運動的過程中,點C到點O的距離為整數(shù)的點有(  )個.

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形方格紙中,我們把頂點都在格點上的三角形稱為格點三角形,如圖,△ABC是一個格點三角形,點A的坐標為(﹣1,2).

(1)點B的坐標為   ,ABC的面積為   

(2)在所給的方格紙中,請你以原點O為位似中心,將△ABC放大為原來的2倍,放大后點A、B的對應點分別為A1、B1,點B1在第一象限;

(3)在(2)中,若P(a,b)為線段AC上的任一點,則放大后點P的對應點P1的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1所示,在RtABC中,∠ACB=90°,AC=BC,點D在斜邊AB上,點E在直角邊BC上,若∠CDE=45°,求證:△ACD∽△BDE.

(2)如圖2所示,在矩形ABCD中,AB=4cm,BC=10cm,點EBC上,連接AE,過點EEFAECD(或CD的延長線)于點F.

①若BE:EC=1:9,求CF的長;

②若點F恰好與點D重合,請在備用圖上畫出圖形,并求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,PAB邊上一點,將△BCP沿CP折疊,得到△FCP.

(1)如圖1,延長PFADE,求證:EF=ED;

(2)如圖2,DF,CP的延長線交于點G,求的值.

查看答案和解析>>

同步練習冊答案