【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
(2)將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2 , 請(qǐng)?jiān)趫D中畫(huà)出△A2BC2 , 并求出線(xiàn)段BC旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積(結(jié)果保留π).

【答案】
(1)

解:如圖所示,畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1


(2)

解:如圖所示,畫(huà)出△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2,

線(xiàn)段BC旋轉(zhuǎn)過(guò)程中所掃過(guò)得面積S= =


【解析】(1)根據(jù)題意畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1即可;(2)根據(jù)題意畫(huà)出△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2 , 線(xiàn)段BC旋轉(zhuǎn)過(guò)程中掃過(guò)的面積為扇形BCC2的面積,求出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,CD⊥AB于點(diǎn)D,⊙D經(jīng)過(guò)點(diǎn)B,與BC交于點(diǎn)E,與AB交與點(diǎn)F.已知tanA= ,cot∠ABC= ,AD=8.
(1)⊙D的半徑;
(2)CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加快我省城鄉(xiāng)公路建設(shè),我省計(jì)劃“十三五”期間高速公路運(yùn)營(yíng)里程達(dá)1000公里,進(jìn)一步打造城鄉(xiāng)快速連接通道,某地計(jì)劃修建一條高速公路,需在小山東西兩側(cè)A,B之間開(kāi)通一條隧道,工程技術(shù)人員乘坐熱氣球?qū)π∩絻蓚?cè)A、B之間的距離進(jìn)行了測(cè)量,他們從A處乘坐熱氣球出發(fā),由于受西風(fēng)的影響,熱氣球以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達(dá)C處,此時(shí)熱氣球上的人測(cè)得小山西側(cè)B點(diǎn)的俯角為30°,則小山東西兩側(cè)A、B兩點(diǎn)間的距離為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)y=x2﹣3|x﹣1|﹣4x﹣3﹣b(b為常數(shù))的圖象與x軸恰好有三個(gè)交點(diǎn),則常數(shù)b的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小穎媽媽的網(wǎng)店加盟了“小神龍”童裝銷(xiāo)售,有一款童裝的進(jìn)價(jià)為60元/件,售價(jià)為100元/件,因?yàn)閯偧用耍瑸榱嗽黾愉N(xiāo)量,準(zhǔn)備對(duì)大客戶(hù)制定如下“促銷(xiāo)優(yōu)惠”方案: 若一次購(gòu)買(mǎi)數(shù)量超過(guò)10件,則每增加一件,所有這一款童裝的售價(jià)降低1元/件,例如一次購(gòu)買(mǎi)11件時(shí),這11件的售價(jià)都為99元/件,但最低售價(jià)為80元/件,一次購(gòu)買(mǎi)這一款童裝的售價(jià)y元/件與購(gòu)買(mǎi)量x件之間的函數(shù)關(guān)系如圖.

(1)一次購(gòu)買(mǎi)20件這款童裝的售價(jià)為元/件;圖中n的值為;
(2)設(shè)小穎媽媽的網(wǎng)店一次銷(xiāo)售x件所獲利潤(rùn)為w元,求w與x之間的函數(shù)關(guān)系式;
(3)小穎通過(guò)計(jì)算發(fā)現(xiàn):賣(mài)25件可以賺625元,而賣(mài)30件只賺600元,為了保證銷(xiāo)量越大利潤(rùn)就越大,在其他條件不變的情況下,求最低售價(jià)應(yīng)定為多少元/件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD上一點(diǎn),且AE=2ED,EC交對(duì)角線(xiàn)BD于點(diǎn)F,則 等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=x-1與反比例函數(shù)y= 的圖像交于點(diǎn)A(2,1),B(-1,-2),則使y1>y2的x的取值范圍是( ).


A.x>2
B.x>2或-1<x<0
C.-1<x<2
D.x>2或x<-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax+bx-3(a≠0)與x軸交于點(diǎn)
A(-2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線(xiàn)段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線(xiàn)段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)也停止運(yùn)動(dòng),當(dāng)△PBQ存在時(shí),求運(yùn)動(dòng)多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時(shí),在BC下方的拋物線(xiàn)上存在點(diǎn)M,使 =5:2,求M點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點(diǎn)O為其交點(diǎn).

(1)探求AO到OD的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖②,若P,N分別為BE,BC上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)PN+PD的長(zhǎng)度取得最小值時(shí),求BP的長(zhǎng)度;
(Ⅱ)如圖③,若點(diǎn)Q在線(xiàn)段BO上,BQ=1,則QN+NP+PD的最小值=

查看答案和解析>>

同步練習(xí)冊(cè)答案