【題目】如圖,將邊長(zhǎng)為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點(diǎn)O為其交點(diǎn).

(1)探求AO到OD的數(shù)量關(guān)系,并說明理由;
(2)如圖②,若P,N分別為BE,BC上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)PN+PD的長(zhǎng)度取得最小值時(shí),求BP的長(zhǎng)度;
(Ⅱ)如圖③,若點(diǎn)Q在線段BO上,BQ=1,則QN+NP+PD的最小值=

【答案】
(1)

解:AO=2OD,

理由:∵△ABC是等邊三角形,

∴∠BAO=∠ABO=∠OBD=30°,

∴AO=OB,

∵BD=CD,

∴AD⊥BC,

∴∠BDO=90°,

∴OB=2OD,

∴OA=2OD;


(2)

如圖②,作點(diǎn)D關(guān)于BE的對(duì)稱點(diǎn)D′,過D′作D′N⊥BC于N交BE于P,

則此時(shí)PN+PD的長(zhǎng)度取得最小值,

∵BE垂直平分DD′,

∴BD=BD′,

∵∠ABC=60°,

∴△BDD′是等邊三角形,

∴BN= BD= ,

∵∠PBN=30°,

=

∴PB= ;

如圖③,作Q關(guān)于BC的對(duì)稱點(diǎn)Q′,作D關(guān)于BE的對(duì)稱點(diǎn)D′,

連接Q′D′,即為QN+NP+PD的最小值.

根據(jù)軸對(duì)稱的定義可知:∠Q′BN=∠QBN=30°,∠QBQ′=60°,

∴△BQQ′為等邊三角形,△BDD′為等邊三角形,

∴∠D′BQ′=90°,

∴在Rt△D′BQ′中,

D′Q′= =

∴QN+NP+PD的最小值= ,

故答案為:


【解析】(1)根據(jù)等邊三角形的性質(zhì)得到∠BAO=∠ABO=∠OBD=30°,得到AO=OB,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論;(2)(Ⅰ)如圖②,作點(diǎn)D關(guān)于BE的對(duì)稱點(diǎn)D′,過D′作D′N⊥BC于N交BE于P,則此時(shí)PN+PD的長(zhǎng)度取得最小值,根據(jù)線段垂直平分線的想知道的BD=BD′,推出△BDD′是等邊三角形,得到BN= BD= ,于是得到結(jié)論;(Ⅱ)如圖③,作Q關(guān)于BC的對(duì)稱點(diǎn)Q′,作D關(guān)于BE的對(duì)稱點(diǎn)D′,連接Q′D′,即為QN+NP+PD的最小值.根據(jù)軸對(duì)稱的定義得到∠Q′BN=∠QBN=30°,∠QBQ′=60°,得到△BQQ′為等邊三角形,△BDD′為等邊三角形,解直角三角形即可得到結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的三角形的“三線”,需要了解1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對(duì)邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2 , 請(qǐng)?jiān)趫D中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD、CE是△ABC的兩條中線,P是AD上一個(gè)動(dòng)點(diǎn),則下列線段的長(zhǎng)度等于BP+EP最小值的是( )

A.BC
B.CE
C.AD
D.AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江南農(nóng)場(chǎng)收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.
(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?
(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過5400元,有幾種方案?請(qǐng)指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)解方程: =
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃麻中學(xué)為了創(chuàng)建全省“最美書屋”,購買了一批圖書,其中科普類圖書平均每本的價(jià)格比文學(xué)類圖書平均每本的價(jià)格多5元,已知學(xué)校用12000元購買的科普類圖書的本數(shù)與用5000元購買的文學(xué)類圖書的本數(shù)相等,求學(xué)校購買的科普類圖書和文學(xué)類圖書平均每本的價(jià)格各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“閱讀季”活動(dòng),小明調(diào)查了班級(jí)里40名同學(xué)計(jì)劃購書的花費(fèi)情況,并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖,根據(jù)圖中相關(guān)信息,這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)分別是(
A.12和10
B.30和50
C.10和12
D.50和30.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為 ,則a的值是(
A.4
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案