【題目】如圖,對面積為1的△ABC逐次進行以下操作:第一次操作,分別延長AB、BC、CA至點A1、B1、C1,使得A1B=AB,B1C=BC,C1A=CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,記其面積為S2…,按此規(guī)律繼續(xù)下去.第n次操作得到△AnBnn,則S1=_____,△AnBnn的面積Sn=_____.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調查,問卷給出了四種上學方式供學生選擇,每人只能選一項,且不能不選.將調查得到的結果繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).
根據(jù)以上信息,解答下列問題:
(1)在這次調查中,一共抽取了 名學生;
(2)補全條形統(tǒng)計圖;
(3)如果全校有1200名學生,學習準備的400個自行車停車位是否夠用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,AB=6,點D在BC上,BD=4,點E從點C出發(fā),以每秒1個單位長度的速度沿CA方向向點A運動,△CDE關于DE的軸對稱圖形為△FDE.
(1)當t為何值時,點F在線段AC上.
(2)當0<t<4時,求∠AEF與∠BDF的數(shù)量關系;
(3)當點B、E、F三點共線時,求證:點F為線段BE的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時相向勻速行駛,當乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,而甲車到達B地后立即掉頭,并保持原速與乙車同向行駛,經(jīng)過15小時后兩車同時到達距A地300千米的C地(中途休息時間忽略不計).設兩車行駛的時間為x(小時),兩車之間的距離為y(千米),y與x之間的函數(shù)關系如圖所示,則當甲車到達B地時,乙車距A地_____千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC中,AB=AC,∠BAC=90°,E為邊AC任意一點,連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;
(2)如圖2,F(xiàn)也為AC上一點,且滿足AE=CF,過A作AD⊥BE交BE于點H,交BC于點D,連接DF交BE于點G,連接AG.若AG平分∠CAD,求證:AH=AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,放在直角坐標系中的正方形ABCD邊長為4,現(xiàn)做如下實驗:拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點數(shù)作為直角坐標中P點的坐標)第一次的點數(shù)作橫坐標,第二次的點數(shù)作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內部和邊界)的概率.
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD
面上的概率為0.75;若存在,指出其中的一種平移方式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,在平面直角坐標系中,對進行循環(huán)往復的軸對稱變換,若原來點A坐標是,則經(jīng)過第2019次變換后所得的A點坐標是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com