【題目】如圖,對面積為1ABC逐次進行以下操作:第一次操作,分別延長AB、BC、CA至點A1、B1C1,使得A1BAB,B1CBC,C1ACA,順次連接A1、B1、C1,得到A1B1C1,記其面積為S1;第二次操作,分別延長A1B1,B1C1,C1A1A2,B2,C2,使得A2B1A1B1,B2C1B1C1,C2A1C1A1,順次連接A2,B2C2,得到A2B2C2,記其面積為S2,按此規(guī)律繼續(xù)下去.第n次操作得到AnBnn,則S1_____,AnBnn的面積Sn_____

【答案】7

【解析】

利用三角形同高等底面積相等,進而求出,得出規(guī)律解答即可.

解:連接A1C,

B1CBC,A1BAB,

SABC,,

2SABC2,

同理可得出:2,

S12+2+2+17;

同理得第二次操作后的面積為S2=7×7=;
第三次操作后的面積為S3=×7=,

按此規(guī)律繼續(xù)下去.第n次操作后AnBnn的面積Sn

故答案為:7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調查,問卷給出了四種上學方式供學生選擇,每人只能選一項,且不能不選.將調查得到的結果繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).

根據(jù)以上信息,解答下列問題:

(1)在這次調查中,一共抽取了 名學生;

(2)補全條形統(tǒng)計圖;

(3)如果全校有1200名學生,學習準備的400個自行車停車位是否夠用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC中,AB6,點DBC上,BD4,點E從點C出發(fā),以每秒1個單位長度的速度沿CA方向向點A運動,△CDE關于DE的軸對稱圖形為△FDE

1)當t為何值時,點F在線段AC上.

2)當0t4時,求∠AEF與∠BDF的數(shù)量關系;

3)當點B、E、F三點共線時,求證:點F為線段BE的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 AB=ACCD⊥ABD,BE⊥ACEBECD相交于點O

1)求證AD=AE;

2)連接OABC,試判斷直線OABC的關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A,B兩地同時相向勻速行駛,當乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,而甲車到達B地后立即掉頭,并保持原速與乙車同向行駛,經(jīng)過15小時后兩車同時到達距A300千米的C地(中途休息時間忽略不計).設兩車行駛的時間為x(小時),兩車之間的距離為y(千米),yx之間的函數(shù)關系如圖所示,則當甲車到達B地時,乙車距A_____千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,ABC中,AB=AC,BAC=90°,E為邊AC任意一點,連接BE.

(1)如圖1,若∠ABE=15°,OBE中點,連接AO,且AO=1,求BC的長;

(2)如圖2,F(xiàn)也為AC上一點,且滿足AE=CF,過AADBEBE于點H,交BC于點D,連接DFBE于點G,連接AG.若AG平分∠CAD,求證:AH=AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,放在直角坐標系中的正方形ABCD邊長為4,現(xiàn)做如下實驗:拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點數(shù)作為直角坐標中P點的坐標)第一次的點數(shù)作橫坐標,第二次的點數(shù)作縱坐標).

(1)求P點落在正方形ABCD面上(含正方形內部和邊界)的概率.

(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD

面上的概率為0.75;若存在,指出其中的一種平移方式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,在平面直角坐標系中,對進行循環(huán)往復的軸對稱變換,若原來點A坐標是,則經(jīng)過第2019次變換后所得的A點坐標是________

查看答案和解析>>

同步練習冊答案