【題目】如圖 AB=ACCD⊥ABDBE⊥ACE,BECD相交于點(diǎn)O

1)求證AD=AE

2)連接OA,BC,試判斷直線(xiàn)OA,BC的關(guān)系并說(shuō)明理由.

【答案】1)證明:在△ACD△ABE中,

∵∠A=∠A,∠ADC=∠AEB=90°AB=AC,

∴△ACD≌△ABE

∴AD=AE

2)互相垂直,

Rt△ADO△AEO中,

∵OA=OA,AD=AE

∴△ADO≌△AEO,

∴∠DAO=∠EAO

OA∠BAC的平分線(xiàn),

∵AB=AC

∴OA⊥BC

【解析】

試題(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;

(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.

試題解析:(1)證明:∵CDAB,BEAC,
∴∠ADC=AEB=90°
ACDABE中,

∴△ACD≌△ABE(AAS),
AD=AE.
(2)猜想:OABC.
證明:連接OA、BC,


CDAB,BEAC,
∴∠ADC=AEB=90°
RtADORtAEO中,

RtADORtAEO(HL).
∴∠DAO=EAO,
又∵AB=AC,
OABC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,∠ABC3C,∠1=∠2,BEAE。 求證:ACAB2BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,點(diǎn)B的中點(diǎn),且,

1)若AE=25,CE=14,求△ACE的面積;

2)求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在MNP中,∠P60°,MNNP,MQPN,垂足為Q,延長(zhǎng)MN至點(diǎn)G,取NGNQ,若MNP的周長(zhǎng)為12,MQa,則MGQ周長(zhǎng)是 ( 。

A.8+2aB.8aC.6+aD.6+2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)全等的直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到點(diǎn)C的方向平移到DEF的位置,AB8, DH2,平移距離為3,則陰影部分的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今有邑,東西七里,南北九里,各開(kāi)中門(mén),出東門(mén)一十五里有木,問(wèn):出南門(mén)幾何步而見(jiàn)木?”這段話(huà)摘自《九章算術(shù)》,意思是說(shuō):如圖,矩形城池ABCD,城墻CD長(zhǎng)9里,城墻BC長(zhǎng)7里,東門(mén)所在的點(diǎn)E,南門(mén)所在的點(diǎn)F分別是CD,BC的中點(diǎn),EGCDEG=15里,FHBC,點(diǎn)CHG上,問(wèn)FH等于多少里?答案是FH=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式(組),并在數(shù)軸上表示它的解集

121+x)<3

2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BAD+ADC180°,AE平分∠BAD,CDAE相交于F,DGBC的,延長(zhǎng)線(xiàn)于G,∠CFE=∠AEB

1)若∠B87°,求∠DCG的度數(shù);

2ADBC是什么位置關(guān)系?并說(shuō)明理由;

3)若∠DABα,∠DGCβ,直接寫(xiě)出α、β滿(mǎn)足什么數(shù)量關(guān)系時(shí),AEDG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線(xiàn)y=kx+1k≠0)與雙曲線(xiàn)y=x0)相交于P1,m).

1)求k的值;

2)若點(diǎn)Q與點(diǎn)P關(guān)于y=x成軸對(duì)稱(chēng),則點(diǎn)Q的坐標(biāo)為Q   );

3)若過(guò)P、Q兩點(diǎn)的拋物線(xiàn)與y軸的交點(diǎn)為N0 ),求該拋物線(xiàn)的解析式,并求出拋物線(xiàn)的對(duì)稱(chēng)軸方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案