如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-3,6),點(diǎn)B,點(diǎn)C分別在x軸的負(fù)半軸和正半軸上,OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC)。
(1)求點(diǎn)B,點(diǎn)C的坐標(biāo);
(2)若平面內(nèi)有M(1,-2),D為線段OC上一點(diǎn),且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q和點(diǎn)P(點(diǎn)P在直線AC上),使以O(shè),P,C,Q為頂點(diǎn)的四邊形是正方形?若存在,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

解:(1)x2-4x+3=0,得x=3或1,
∵OB<OC,
∴B(-1,0),C(3,0);
(2)過A作AH⊥x軸于H點(diǎn),則AH=CH=6,
∴∠ACB=45°,
同理(過M作MT⊥x軸于T點(diǎn),則MT=CT=2 )可證:∠MCD=45°,
∴∠ACB=∠MCD,
又∵∠DMC=∠BAC,
∴△CAB∽△CMD,

在△AHC中,AC=,同理MC=
,
,

設(shè)MD的解析式為y=kx+b(k≠0),則,
,
∴函數(shù)解析式是:y=3x-5;
(3)存在,Q1(3,3)或Q2)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案